【AI大模型】自动生成红队攻击提示--GPTFUZZER

本篇参考论文为:
Yu J, Lin X, Xing X. Gptfuzzer: Red teaming large language models with auto-generated jailbreak prompts[J]. arXiv preprint arXiv:2309.10253, 2023.
https://arxiv.org/pdf/2309.10253

一 背景

虽然LLM在今天的各个领域得到了广泛的运用,但是LLM并不一定完全可靠,它有时会产生有毒或者误导性的内容,并且有时候还会产生一些“幻觉”,从而导致一些不真实或者毫无意义的输出。

越狱攻击
越狱攻击是使用精心制作的提示来绕过LLM保护措施,潜在地引发有害的响应。在释放LLM潜力的同时,这些攻击也可能产生违反提供商指导方针甚至法律界限的输出。
现在大多数现有的越狱攻击研究主要依赖于手工制作提示符,虽然这些手工制作的提示可以很好地修改为特定的LLM行为,但这种方法有几个固有的局限性:
手动制作prompt的局限性主要包括以下几个方面:

可扩展性差:随着LLM的数量和版本增加,手动设计prompt变得不切实际。每个模型都需要定制的prompt,这会导致大量重复劳动和难以管理的工作量。
劳动力密集型:制作有效的prompt需要深入了解LLM的行为,并投入大量的时间和精力。这使得安全性测试变得昂贵,特别是考虑到LLM的持续更新和进化。
覆盖范围有限:人工方法可能无法完全覆盖所有的漏洞,因为它们受到人类偏见和注意力的限制。自动化的系统可以探索更广泛的潜在漏洞,提供更全面的健壮性评估。
适应性差:LLM模型不断更新和迭代,手动方法难以跟上这些快速的变化,可能导致新的漏洞被遗漏。
一致性和标准化难:手工制作的prompt可能在质量和表现上参差不齐,这使得安全性评估结果的可比性较差。
成本和时间投入:手动制作prompt需要大量的时间和资源投入,这增加了安全性测试的成本。
误报率高:手工制作的prompt可能包含不必要的重复或混淆性的元素,导致误报率高,降低了测试的效率。
缺乏动态性和持续改进:手工制作的prompt一旦制作完成,很难进行动态调整或持续改进。
忽略复杂交互:手工制作的prompt可能无法充分考虑LLM的多轮交互和上下文理解,导致测试结果的不准确性。
在这里插入图片描述

二 GPTFUZZER

基于以上的问题,该论文提出了一种名为GPTFUZZER的全新黑盒测试框架,用于自动生成用于测试语言模型(LLM)的安全性的模板。GPTFUZZER的核心思想是基于AFL测试框架,利用人类编写的初始模板,通过变异操作产生新的模板,以检测LLM的潜在漏洞。GPTFUZZER包含三个关键组件:种子选择策略、变异操作符和判断模型。种子选择策略用于平衡效率和多样性,变异操作符用于产生语义上等价或类似的句子,判断模型用于评估模板的成功率。

GPTFUZZER框架的实施步骤可以概括为以下几个主要阶段:

初始化:收集人类编写的初始模板,这些模板通常包含一个场景描述和一个问题占位符,用于引导LLM生成相关内容。
种子选择:从模板池中随机选择一个模板作为当前迭代的种子。为了提高效率,GPTFUZZER采用了多种种子选择策略,如随机选择、轮询选择和UCB选择等。
变异操作:使用ChatGPT等LLM对种子模板进行变异操作,以生成新的模板。变异操作包括生成、交叉、扩展、缩短和改写等,以增加模板的多样性和新颖性。
生成提示:将变异后的模板与目标问题结合,生成一个完整的提示,用于查询目标LLM。
查询LLM:将生成的提示发送给目标LLM,获取模型的响应。
判断模型:使用预训练的RoBERTa模型评估响应是否是违规的,从而判断模板是否成功“越狱”。
模板更新:如果响应被判定为违规,则保留该变异模板;如果响应是合规的,则丢弃该模板。
迭代:重复上述步骤,直到达到查询预算上限或满足停止条件。
结果分析:分析GPTFUZZER生成的有效模板,评估攻击成功率,分析不同组件对攻击性能的影响,并进行比较实验。
在这里插入图片描述
变异操作符是GPTFUZZER框架中的关键组件之一,用于对初始模板进行变异,以生成新的模板。变异操作符的目的是增加模板的多样性和新颖性,以提高发现LLM潜在漏洞的机会。GPTFUZZER中使用的变异操作符主要包括以下几种:

生成(Generate):生成一个新的模板,其风格与原始模板相似,但内容不同。例如,可以改变场景描述或问题类型。
交叉(Crossover):将两个不同的模板结合起来,以产生新的模板。这种操作可以结合两个模板的优点,生成更具攻击力的模板。
扩展(Expand):在原始模板的开头添加新的内容,以扩展模板。
缩短(Shorten):删除原始模板中的一些句子,使模板更加简洁。
改写(Rephrase):对原始模板中的每个句子进行改写,改变句子的结构和语法,以产生语义上等价但表达方式不同的模板。
这些变异操作符通过ChatGPT等LLM实现,利用LLM生成文本的能力,从而获得变异后的模板。例如,可以使用ChatGPT生成一个新的场景描述或问题,将其插入原始模板中;或者使用ChatGPT交叉两个不同的模板,生成一个新的模板。通过多种变异操作的组合,GPTFUZZER能够生成大量新颖的模板,以提高发现LLM漏洞的机会。

总体而言,GPTFUZZER提供了一个有效的黑盒测试框架,用于生成LLM的通用攻击模板,有助于评估LLM的安全性

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/696195.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

LeetCode343:整数拆分

题目描述 给定一个正整数 n ,将其拆分为 k 个 正整数 的和( k > 2 ),并使这些整数的乘积最大化。 返回 你可以获得的最大乘积 。 代码 动态规划 class Solution { public:int integerBreak(int n) {/*dp[i]:表示对…

用 Supabase CLI 进行本地开发环境搭建

文章目录 (零)前言(一)Supabase CLI(1.1)安装 Scoop(1.2)用 Scoop 安装 Supabase CLI (二)本地项目环境(2.1)初始化项目(2…

【笔记】EF_PNN获取及运营商名称显示(待完善)

问题背景 当设备无法成功解析EONS(PNN)的值(即SIM卡EF文件内容),则会用次优先级的NITZ去refresh了SPN。(问题代码如下,是通过Phone对象拿到plmn为空) 运营商名称一般显示优先级:Eons > NITZ > XML OPL id 0 对应的是PNN第一条 功能逻辑 (定制)当卡中的spn为空…

【XSRP软件无线电】基于软件无线电平台的QPSK频带通信系统设计

目录: 目录: 一、绪论 1.1 设计背景 1.2 设计目的 二、系统总体方案 2.1 专题调研题目 2.2 调研背景 2.3 设计任务解读 2.4 设计原理 2.4.1 原理框图 2.4.2 功能验证 三、软件设计 3.1 程序解读 3.2 程序设计 3.3 仿真结果: 四、程序代码分析…

【spark RDD】spark 之 Kryo高性能序列化框架

文章目录 一. RDD序列化的原因二. Kryo序列化框架三. spark 配置 kryo 序列化1. 设定kryo序列化2. 注册序列化类(非必须,但是强烈建议做)3. 配置 spark.kryoserializer.buffer 一. RDD序列化的原因 Spark初始化工作是在Driver端进行的&#…

JAVA智慧工地管理系统源码,智慧工地扬如何实现对工地扬尘的实时监测

智慧工地扬尘监测系统概述 智慧工地扬尘监测系统是一种利用现代信息技术,如光电传感技术和无线传输技术,对工地扬尘污染进行实时监测和管理的高效工具。该系统的目的是为了保护环境,减少因建筑施工产生的扬尘对周边地区的影响,同…

2024生日快乐祝福HTNL源码修复版

源码介绍 2024生日快乐祝福HTNL源码,源码由HTMLCSSJS组成,记事本打开源码文件可以进行内容文字之类的修改,双击html文件可以本地运行效果,也可以上传到服务器里面, 源码截图 源码下载 2024生日快乐祝福HTNL源码

C语言(指针)3

Hi~!这里是奋斗的小羊,很荣幸各位能阅读我的文章,诚请评论指点,关注收藏,欢迎欢迎~~ 💥个人主页:小羊在奋斗 💥所属专栏:C语言 本系列文章为个人学习笔记&#x…

【pandas】库中的apply(lambda function ,arix)

pandas.apply() 遍历DataFrame的元素(一行或者一列数据) 行遍历:axis 1 列遍历:axis 0 基础信息 pandas的apply()方法是用来调用一个lambda函数,让函数对数据对象具有批处理的特性。 pandas支持apply()调用…

Docker:docker在项目中常用的一些命令

简介   Docker 是一个开源的容器化平台,它允许开发者将应用程序及其依赖项打包到一个可移植的容器中,并发布到任何安装了 Docker 引擎的机器上。这些容器是轻量级的,包含了应用程序运行所需的所有东西,如代码、系统库、系统工具…

两种方法合并3dtiles(分别使用js/java)

目录 前言: 需合并的json目录 aa/tileset.json bb/tileset.json cc/tileset.json dd/tileset.json ee/tileset.json js源码: 运行命令: 生成结果: java源码: Matrix.java ThreeDTilesJoin2.java pom文件…

YOLOv8+CLIP实现图文特征匹配

本文通过结合YOLOv8s的高效物体检测能力与CLIP的先进图像-文本匹配技术,展示了深度学习在处理和分析复杂多模态数据中的潜力。这种技术的应用不仅限于学术研究,还能广泛应用于工业、商业和日常技术产品中,以实现更智能的人机交互和信息处理。…