自定义类型——结构体、枚举和联合

自定义类型——结构体、枚举和联合

  • 结构体
    • 结构体的声明
    • 匿名结构体
    • 结构体的自引用
    • 结构体的初始化
    • 结构体的内存对齐
    • 修改默认对齐数
    • 结构体传参
  • 位段
  • 枚举
  • 联合

结构体

  • 结构是一些值的集合,这些值被称为成员变量,结构的每个成员可以是不同类型的变量。

数组是一些值的结合,类型是相同的

结构体的声明

	struct tag{member_list;}variable_list;//全局变量
  • 这里通过前面的列表创建的变量是全局变量
	typedef struct tag{member_list;}tag;//相当于struct tag
  • typedef可以将复杂的类型简化

匿名结构体

	struct{member_list;}variavle_list;//必须存在
  • 匿名结构体类型,如果没有对结构体类型重命名,只能使用一次

结构体的自引用

//结构体的自引用
struct stu
{int age;struct stu* next;
};
typedef struct stu
{int age;struct stu* next;
}stu;

结构体的初始化

//结构体的初始化#include<stdio.h>
struct student
{char name[10];unsigned int age;char sex[5];
};int main(void)
{//初始化struct student n1 = { "张三",21,"男"};//打印printf("%s %u %s", n1.name, n1.age, n1.sex);return 0;
}

运行截图
运行截图

结构体的内存对齐

//结构体的内存对齐
#include<stdio.h>
struct eg1
{int i;char j;char k;
};struct eg2
{char x;int y;char z;
};int main(void)
{//打印eg1printf("%zd\n", sizeof(struct eg1));//8//打印eg2printf("%zd\n", sizeof(struct eg2));//12return 0;
}
  • 结构体对齐规则

1.结构体的第一个成员,对齐到结构体在内存中存放位置的0偏移处
2.从第二个成员开始,每个成员都要对齐到(一个对齐数)的整数倍处

对齐数:
结构体成员自身大小和默认对齐数的较小值

在VS中:默认对齐数为8
Linux gcc:没有对齐数,对齐数就是成员自身大小

3.结构总大小为最大对齐数的较小值
4.如果结构体中嵌套了结构体成员,要将嵌套的成员对齐到自己的成员中最大对齐数的整数倍处
5.结构体的总大小必须是最大对齐数的整数倍,这里的最大对齐数是:包含嵌套结构体成员中的对齐数的所以对齐数中的最大值

  • 结构体内存对齐的原因

1.平台原因:
不是所有的硬件平台都能访问任意地址上的任意数据的,某些硬件平台只能在地址处取某些特定类型的数据,否则会抛出硬件异常

2.性能原因:
数据结构(尤其是栈)应该尽可能的在自然边界上对齐,原因在于,为了访问来对齐的内存,处理器需要作俩次内存访问,而对齐的内存仅需要一次访问

总结:
结构体的内存对齐是拿空间来换取时间的做法(满足对齐,节省空间:让占用空间小的成员尽量集中在一起)

修改默认对齐数

#pragma pack()可以设置默认对齐数

//修改默认对齐数
#include<stdio.h>
//修改默认对齐数为2
#pragma pack(2)struct eg1
{char s1;int s2;
};//恢复默认对齐数
#pragma pack()struct eg2
{char s1;int s2;
};int main(void)
{//打印eg1printf("%zd\n",sizeof(struct eg1));//6//打印eg2printf("%zd\n", sizeof(struct eg2));//8return 0;
}

总结:
结构在对齐方式不合适的时候,可以自己更改默认对齐数

结构体传参

//结构体传参
#include<stdio.h>struct eg
{int arr[100];char ch[20];
}s1 = { {1,2,3,4,5} ,"abcdef"};
//结构体传参
void print1(struct eg s1)
{printf("%s\n",s1.ch);
}
//结构体地址传参
void print2(struct eg* ps)
{printf("%s\n",ps->ch);
}
int main(void)
{//结构体传参print1(s1);//结构体地址传参print2(&s1);return 0;
}

运行截图:
截图

  • 总结:结构体传参的时候,要传结构体的地址
  • 原因在于,函数传参的时候,参数是需要压栈,会有时间和空间上的系统开销

  • 如果传递一个结构体对象的时候,结构体过大,参数压栈的系统开销比较大,所以导致性能下降

位段

  • 位段的声明和结构体的声明基本相似,但也存在俩点不同:

1.位段的成员必须为int,unsigned int或者 signed int
2.位段的成员名后面有一个冒号和一个数字

//位段
#include<stdio.h>
struct eg
{int _a : 2;int _b : 5;int _c : 10;int _d : 20;
};int main(void)
{printf("%zd",sizeof(struct eg));return 0;
}

运行截图:
在这里插入图片描述

  • 位段:二进制位,可以节省空间

位段的内存分配
1.位段的成员可以是int,unsigned int,signed int或者是char (属于整数家族)类型
2.位段的空间上是按照需要以4个字节(int)或者1个字节(char)的方式来开辟的
3.位段涉及很多不确定因素,位段时不跨平台的,注重可移植的程序应该避免使用位段

位段的跨平台问题
1.int位段被当成有符号数还是无符号数是不确定的
2.位段中最大位的数目不能确定(16位机器最大16,32位机器最大32,写成27时可能在16位机器上出现问题)
3.位段中的成员在内存中从左到右分配,而且从右向左标准尚未定义
4.当一个结构包含俩个位段,第二个位段成员比较大,无法容纳于第一个位段剩余的位时,是舍弃剩余的位还是利用,这是不确定的

总结:跟结构相比,位段可以达到同样的效果,但是可以很好的节省空间,但是有跨平台的问题存在

枚举

  • 枚举:即一 一列举
//枚举
enum Day
{Mon,Tues,Wed,Thur,Fri,Sat,Sun
};enum Color
{Green,Blue,Red,Orange
};

enum Day和enum color都是枚举类型,{ }中的内容是枚举类型的可能取值,也叫枚举常量。这些枚举常量都是存在取值的,默认是从0开始,一次低递加1

  • 也可以在定义的时候赋值
enum Day
{Mon = 1,Tues = 2,Wed = 3,Thur = 4,Fri = 5,Sat = 6,Sun = 7
};

枚举的优点:
1.增加代码的可读性和可维护性
2.和#define定义的标识符比较,枚举由类型检查,更加严谨
3.防止了命名污染(封装)
4.便于调试
5.使用方便,一次可以定义多个变量

联合

  • 联合同样也是一种自定义类型,这种类型定义的变量也包含一系列的成员,特征是这些成员公用同一块空间(所以联合也叫共同体)
//联合
union eg
{char i;int j;
};
  • 特点:

联合的成员是共用同一块内存空间的,这样一个联合变量的大小,至少是最大成员的大小(因为联合至少得有能力保存最大的那个成员)

  • 联合大小的计算:

1.联合的大小至少是最大成员的大小
2.当最大成员大小不是最大对齐数的整数的时候,就有对齐到最大对齐数的整数倍

//联合
#include<stdio.h>
union eg
{char i;int j;
};
int main(void)
{union eg s;printf("%p\n", &s.i);printf("%p\n", &s.j);return 0;
}

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/696460.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java抽象类:为何它是你代码架构的基石?

目录 1、抽象类的概念 2、抽象类语法 3、抽象类特性 4、抽象类的作用 5、 完结散花 个人主页&#xff1a;秋风起&#xff0c;再归来~ 文章专栏&#xff1a;javaSE的修炼之路 个人格言&#xff1a;悟已往之不谏&#xff0c;知来者犹可追 克…

扩散模型diffusion model

一 什么是扩散模型 1.1 现有生成模型 已经有大量的方法证明深度生成模型能够模拟人类的想象思维&#xff0c;生成人类难以分辨真伪的内容&#xff0c;主要方法如下&#xff1a; 1、GAN&#xff1a;用神经网络训练生成器和判别器 GAN 的主要思想&#xff1a; GAN 就是一个互搏的…

82.网络游戏逆向分析与漏洞攻防-移动系统分析-坐标修正数据包的处理与模拟

免责声明&#xff1a;内容仅供学习参考&#xff0c;请合法利用知识&#xff0c;禁止进行违法犯罪活动&#xff01; 如果看不懂、不知道现在做的什么&#xff0c;那就跟着做完看效果&#xff0c;代码看不懂是正常的&#xff0c;只要会抄就行&#xff0c;抄着抄着就能懂了 内容…

基于SpringBoot的酒店(预约)客房管理系统的设计与实现+毕业论文

系统介绍 酒店客房管理系统为酒店管理者和用户、清洁人员提供一个在线管理酒店客房的系统。在网站的设计中&#xff0c;一共分为了两个模块设计&#xff0c;一个是前台模块&#xff0c;一个是后台模块&#xff0c;前台主要用于提供查看客房信息&#xff0c;酒店资讯&#xff0…

如何用微信小程序实现远程控制4路控制器/断路器

如何用微信小程序实现远程控制4路控制器/断路器呢&#xff1f; 本文描述了使用微信小程序调用HTTP接口&#xff0c;实现控制4路控制器/断路器&#xff0c;支持4路输出&#xff0c;均可独立控制&#xff0c;可接入各种电器。 可选用产品&#xff1a;可根据实际场景需求&#xf…

分享一个不错的测试工具 RunnerGo

最近我不少学员和粉丝的公众号都在分享一个比较综合的测试平台工具&#xff1a;RunnerGo 于是&#xff0c;我也好奇的搜了一下&#xff0c;发现这个工具是属于一个综合型平台&#xff0c;包括接口管理&#xff0c;自动测试&#xff0c;性能测试等集合。在目前业内的商业平台中…

等保测评技术方案(五)

&#xff08;八&#xff09;漏洞扫描方案 1.参与人员 乙方工程师&#xff1a;谭 然、张 剑等。 范围经过双方确认&#xff0c;此次评估的对象包括&#xff1a; 2.网络设备 IP 地址 设备型号 备注 / / / / / / 以现场测评实际数据为准 3.应用系统 地址 …

JVM的垃圾回收算法有哪些?从可达性分析算法开始,深入解读三大核心垃圾回收算法

导航&#xff1a; 【Java笔记踩坑汇总】Java基础JavaWebSSMSpringBootSpringCloud瑞吉外卖/黑马旅游/谷粒商城/学成在线设计模式面试题汇总性能调优/架构设计源码-CSDN博客 目录 一、概念准备 1.1 GC Roots 1.2 可达性分析算法 1.3 非可达对象被回收过程中的两次标记 1.4…

【C++】 string类:应用与实践

&#x1f49e;&#x1f49e; 前言 hello hello~ &#xff0c;这里是大耳朵土土垚~&#x1f496;&#x1f496; &#xff0c;欢迎大家点赞&#x1f973;&#x1f973;关注&#x1f4a5;&#x1f4a5;收藏&#x1f339;&#x1f339;&#x1f339; &#x1f4a5;个人主页&#x…

vue + element-plus 开发中遇到的问题

1.问题之路由守卫 初写路由守卫&#xff0c;对于next()的理解不是很透彻&#xff0c;就想着都放行&#xff0c;不然看不到效果&#xff0c;结果控制台出现了警告&#xff0c;想着报黄的问题就不是问题&#xff0c;但仔细一看发现他说&#xff0c;如果再生产阶段就会失败&#x…

pytest(二)

1.pytest-html⽣成报告 Pytest-HTML 是⼀个插件&#xff0c;它可以⽣成漂亮且易于阅读的 HTML 测试报告。下⾯是使⽤ pytest-html ⽣成报告的步骤&#xff1a; 1. 安装 pytest-html 插件&#xff1a; pip install pytest-html 2. 运⾏测试并⽣成报告 pytest --htmlr…