【卫星影像三维重建-全流程代码实现】点云Mesh重构

点云—>Mesh模型

  • 1.介绍
    • 1.1 背景
    • 1.2 效果示意
  • 2 算法实现
    • 2.1 依赖库
    • 2.2 实验数据
    • 2.3 代码实现
    • 2.4 实验效果
  • 3.总结

1.介绍

1.1 背景

(1)本文主要内容是将三维点云(离散的三维点)进行表面重建生成Mesh网格,之前有篇关于开源软件-Cars-Mesh使用,它是对开源软件-Cars使用生成的点云进行处理得到Mesh网格结构,由于使用cars-mesh需要的配置文件较多,深入其内部涉及到点云mesh构建部分,得出如下结论:

cars-mesh主要有三种mesh构建方法:

  1. 泊松表面重建(poisson_reconstruction)
  2. Delaunay 三角剖分(delaunay_2d_reconstruction)
  3. ball_pivoting_reconstruction

此外还有移动立方体(Marching Cubes Algorithm)、贪婪投影三角化(Greedy Triangulation)等方法。

(2)由于基于卫星影像生成的建筑物点云往往只有建筑物屋顶点云,建筑物立面几乎没有点云,因此充分考虑这种特点,选取了Delaunay三角剖分的方法进行重建,能够保持建筑物立面垂直以及屋顶有棱有角。

1.2 效果示意

如下效果是在meshlab中呈现的:
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2 算法实现

2.1 依赖库

本算法依赖三维点云处理库open3d以及在二维上进行三角剖分的Delaunay实现函数,这里在scipy和matplotlib均有实现,本文选择了scipy中的。

2.2 实验数据

vertices.ply,其只包含点的xyz信息,点云对应的颜色无。实验数据见资源绑定,包含原始点云和mesh构建后的数据,效果在cloudcompare中按照高程渲染效果如下:
在这里插入图片描述

2.3 代码实现

import open3d as o3d
import numpy as np
from scipy.spatial import Delaunay
import matplotlib.tri as mtriclass Mesh:def __init__(self, vertices, triangles, vertex_colors=None):self.vertices = vertices		self.triangles = trianglesself.vertex_colors = vertex_colorsdef delaunay_2d_reconstruction(pcd_file: str, method: str = "scipy") -> Mesh:"""2.5D Delaunay triangulation: Delaunay triangulation on the planimetricpoints and add afterwards the z coordinates.Parameters----------pcd_file: strPath to the PLY file containing point cloud data.method: str, default='scipy'Method to use for Delaunay 2.5D triangulation. Available methods are'scipy' and 'matplotlib'.Returns-------mesh: MeshMesh object containing vertices, triangles, and vertex colors."""# Load point cloud from PLY filepcd = o3d.io.read_point_cloud(pcd_file)# Get points, colors, and z coordinates from point cloudpoints = np.asarray(pcd.points)[:, :2]  # Project points to XY planecolors = np.asarray(pcd.colors)# Perform 2D Delaunay triangulationif method == "scipy":mesh_data = Delaunay(points)elif method == "matplotlib":mesh_data = mtri.Triangulation(points[:, 0], points[:, 1])# Construct meshmesh_vertices = np.hstack([points, np.zeros((len(points), 1))])mesh_triangles = mesh_data.simplices# Set z coordinates based on the original point cloudz_coordinates = np.asarray(pcd.points)[:, 2]mesh_vertices[:, 2] = z_coordinates# Create Mesh object with vertex colorsmesh = Mesh(mesh_vertices, mesh_triangles, vertex_colors=colors)return meshdef save_mesh_as_ply(mesh: Mesh, filename: str):"""Save mesh as a PLY file.Parameters----------mesh: MeshMesh object containing vertices, triangles, and vertex colors.filename: strPath to save the PLY file."""# Create Open3D TriangleMesh objectmesh_o3d = o3d.geometry.TriangleMesh()mesh_o3d.vertices = o3d.utility.Vector3dVector(mesh.vertices)mesh_o3d.triangles = o3d.utility.Vector3iVector(mesh.triangles)# Set vertex colorsif mesh.vertex_colors is not None:mesh_o3d.vertex_colors = o3d.utility.Vector3dVector(mesh.vertex_colors)# Save TriangleMesh object to PLY fileo3d.io.write_triangle_mesh(filename, mesh_o3d)# Example usage:
pcd_file = "vertices.ply"
method = "scipy"  # or "matplotlib"
mesh = delaunay_2d_reconstruction(pcd_file, method)
save_mesh_as_ply(mesh, "vertices_result_mesh.ply")

2.4 实验效果

整体效果在前面已经有呈现了,以下呈现几栋比较高的建筑效果:首先是mesh网格结构:
在这里插入图片描述在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.总结

整体而言,针对基于卫星影像生成的点云,Delaunay 三角剖分mesh构建效果良好:
(1)mesh重构本质上还是依赖于点云生成效果好坏,Delaunay 三角剖分在高建筑效果比较突出,但在低矮建筑效果差一些;
(2)在建筑物楼顶棱角细节层面以及与地面接触的部分有待进一步优化;
(3)TODO:尝试更多的mesh重构方法以及优化(2)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/697735.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

css中用于设置光标颜色的属性

caret-color 是一个 CSS 属性,它用于定义输入光标(caret)的颜色。这里的“插入光标”(insertion caret)指的是在网页的可编辑器区域内,用来指示用户的输入具体会插入到哪里的那个一闪一闪的形似竖杠 | 的东…

用Arm CCA解锁数据的力量

安全之安全(security)博客目录导读 目录 CCA将如何改变Arm架构呢? 在实践中部署CCA 释放数据和人工智能的全部力量和潜力 早期计算中最大的挑战之一是管理计算资源,以最大化计算效率同时提供给不同程序或用户分配资源的分离。这导致了我们今天大多数使用的时间…

QLExpress入门及实战总结

文章目录 1.背景2.简介3.QLExpress实战3.1 基础例子3.2 低代码实战3.2.1 需求描述3.2.1 使用规则引擎3.3.2 运行结果 参考文档 1.背景 最近研究低代码实现后端业务逻辑相关功能,使用LiteFlow作为流程编排后端service服务, 但是LiteFlow官方未提供图形界面编排流程。…

python获取网页表格数据

需求 需要网页中的基因(Gene Symbol),一共371个。 使用pandas读取网页表格 read_html 返回的是列表(a list of DataFrame) import pandas as pd import bioquest as bq url "http://exocarta.org/browse_resul…

《换你来当爹》:AI驱动的养成游戏,探索虚拟亲子关系的新模式

AI技术如何重塑我们对游戏互动的认知 在人工智能技术的浪潮下,一款名为《换你来当爹》的AI养成游戏,以其创新的互动模式和个性化体验,吸引了游戏爱好者的目光。这款游戏利用了先进的LLM技术,通过AI实时生成剧情和图片&#xff0c…

阿里云OSS配置跨域及域名访问

1、配置跨域 进入对象存储OSS–>OSS存储桶–>数据安全–>跨域设置–>创建规则 2、配置跨域 Etag x-oss-request-id3、配置结果如下 4、数据源配置 切换到数据管理–>静态页面 配置根页面 保存结果如下 5、配置域名访问 绑定域名 添加txt记录 验证绑定 …

人工智能引领工业园区智能化升级:AI视频监测助力安全生产管理

当前,许多工业园区面临着一个共同的挑战:大量的监控视频处于“沉睡”状态,无法主动预警风险,需要人工持续盯防。同时,由于生产现场工况复杂,高危场景的巡检工作不仅增加了人员的暴露频次,而且在…

智能座舱语音助手产品方案

一、用户调研与痛点分析 1.目标用户分析 用户画像 性别女性年龄50地域2-3线城市职业退休或退居二线教育中专、 大专、 本科财务家庭财务管理者爱好享受生活、 照顾家庭标签有闲有小钱二、产品定位与卖点提炼 购车目的 愉悦自我, 专属于自己的座驾: 家…

java多线程 线程交替执行(同步)的各种实现方案

目录 java多线程 线程交替执行(同步)的各种实现方案需求 指定具体执行顺序实现一:wait_notify机制 Thread标志位实现二:lock_condition机制 Thread标志位实现三:semaphore信号量 不指定具体执行顺序,只交…

极验3滑块逆向分析

1、底图还原 下 断点&#xff0c;可以分析底图还原逻辑 2、跟W值 var Str_Unicodefunction(str){var unid\\u00;for(let i0,lenstr.length;i<len;i){if(i<len-1){unidstr.charCodeAt(i).toString(16)\\u00;}else if(ilen-1){unidstr.charCodeAt(i).toString(16);}}re…

Java | Leetcode Java题解之第88题合并两个有序数组

题目&#xff1a; 题解&#xff1a; class Solution {public void merge(int[] nums1, int m, int[] nums2, int n) {int p1 m - 1, p2 n - 1;int tail m n - 1;int cur;while (p1 > 0 || p2 > 0) {if (p1 -1) {cur nums2[p2--];} else if (p2 -1) {cur nums1[p…

ubuntu 22.04 安装 RTX 4090 显卡驱动 GPU Driver(PyTorch准备)

文章目录 1. 参考文章2. 检查GPU是Nvidia3. 卸载已有驱动3.1. 命令删除3.2. 老驱动包 4. 官网下载驱动5. 运行5.1. 远程安装关闭交互界面5.2. 运行5.3. 打开交互界面 6. 检测与后续安装 1. 参考文章 https://blog.csdn.net/JineD/article/details/129432308 2. 检查GPU是Nvid…