回归预测 | Matlab实现SMA-GPR黏菌算法优化高斯过程回归多变量回归预测

回归预测 | Matlab实现SMA-GPR黏菌算法优化高斯过程回归多变量回归预测

目录

    • 回归预测 | Matlab实现SMA-GPR黏菌算法优化高斯过程回归多变量回归预测
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

Matlab实现SMA-GPR黏菌算法优化高斯过程回归多变量回归预测
1.Matlab实现SMA-GPR黏菌算法优化高斯过程回归多变量回归预测(完整源码和数据)
2.输入多个特征,输出单个变量,多输入单输出回归预测;
3.多指标评价,评价指标包括:R2、MAE、MSE、RMSE等,代码质量极高;
4.粒子群算法优化参数为:优化核函数超参数 sigma,标准差,初始噪声标准差;
5.excel数据,方便替换,运行环境2018及以上,可在下载区获取数据和程序内容。
回归预测 | Matlab实现SMA-GPR黏菌算法优化高斯过程回归多变量回归预测

程序设计

  • 完整程序和数据获取方式,(资源处下载):Matlab实现SMA-GPR黏菌算法优化高斯过程回归多变量回归预测
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行
% restoredefaultpath
%%  导入数据
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
f_ =size(P_train, 1); %输入特征维度
M = size(P_train, 2);
N = size(P_test, 2);
%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  转置以适应模型
p_train = p_train'; p_test = p_test';
t_train = t_train'; t_test = t_test';
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  超参数设置
Best_pos = [0.6, 0.7, 30];    % 优化下界%%  仿真测试
t_sim1 = predict(net, p_train);
t_sim2 = predict(net, p_test );
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 数据转置
T_sim1=T_sim1';
T_sim2 =T_sim2';
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  均方根误差
error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%
%决定系数
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test -  T_sim2)^2 / norm(T_test -  mean(T_test ))^2;
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%
%均方误差 MSE
mse1 = sum((T_sim1 - T_train).^2)./M;
mse2 = sum((T_sim2 - T_test).^2)./N;
%%
%RPD 剩余预测残差
SE1=std(T_sim1-T_train);
RPD1=std(T_train)/SE1;
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
SE=std(T_sim2-T_test);
RPD2=std(T_test)/SE;
%% 平均绝对误差MAE
MAE1 = mean(abs(T_train - T_sim1));
MAE2 = mean(abs(T_test - T_sim2));
%% 平均绝对百分比误差MAPE
MAPE1 = mean(abs((T_train - T_sim1)./T_train));
MAPE2 = mean(abs((T_test - T_sim2)./T_test));
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 测试集误差图
figure  
ERROR3=T_test-T_sim2;
plot(T_test-T_sim2,'b-*','LineWidth',1.5)
xlabel('测试集样本编号')
ylabel('预测误差')
title('测试集预测误差')
grid on;
legend('GPR预测输出误差')
%% 打印出评价指标
disp(['-----------------------误差计算--------------------------'])
disp(['评价结果如下所示:'])
disp(['平均绝对误差MAE为:',num2str(MAE2)])
disp(['均方误差MSE为:       ',num2str(mse2)])
disp(['均方根误差RMSEP为:  ',num2str(error2)])
disp(['决定系数R^2为:  ',num2str(R2)])
disp(['剩余预测残差RPD为:  ',num2str(RPD2)])
disp(['平均绝对百分比误差MAPE为:  ',num2str(MAPE2)])

参考资料

[1]https://blog.csdn.net/kjm13182345320/article/details/124443069?spm=1001.2014.3001.5501
[2]https://blog.csdn.net/kjm13182345320/article/details/124443735?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/698558.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

tomcat--java的安装

组成 语言、语法规范。关键字,如: if、for、class等源代码 source code依赖库,标准库(基础)、第三方库(针对某些应用)。由于底层代码太难使用且开发效率低,封装成现成的库JVM虚拟机。将源代码编译为中间码即字节码后,再运行在JVM之上 jdk和jre 概念 j…

win server服务器 关闭危险端口 135,137,138,139,445的方法

通过防火墙来控制 打开控制面板 选择检查防火墙状态 选择高级设置 选择入站规则,再新建规则 选择端口,下一步 选择端口应用于啥协议,再指定端口,再下一步 选择阻止连接,下一步 下一步 给规则别名一下,方便…

解决离线服务器无法加载HuggingFaceEmbeddings向量化模型的问题

由于服务器是离线的,因此我先在本地到huggingface官网下载模型text2vec,然后上传到服务器上运行,报错: (MaxRetryError(HTTPSConnectionPool(host\huggingface.co\, port443): Max retries exceeded with url: /api/models/senten…

C语言 8 函数递归

目录 1. 递归是什么? 2.递归的限制条件 3. 递归举例1 4. 递归举例2 5.迭代 6. 递归举例3 拓展学习: 1. 递归是什么? 递归是学习C语⾔函数绕不开的⼀个话题,那什么是递归呢? 递归其实是⼀种解决问题的⽅法&#xff0c…

2024全新小狐狸AI免授权源码

源码安装说明: 下 载 地 址 : runruncode.com/php/19757.html 1. 在宝塔新建一个站点,选择 PHP 版本为 7.2、7.3 或 7.4。将压缩包上传到站点的根目录,并设置运行目录为 /public。 2. 导入数据库文件,该文件位于 …

电脑D盘XLS文件怎么恢复?6个恢复方法,找回丢失的文件!

在日常工作和学习中,我们经常会使用到XLS文件,也就是Excel表格文件。然而有时由于误操作或其他原因,我们可能会发现电脑D盘中的XLS文件突然不见了。这时如何快速、有效地恢复这些文件,成为了我们待解决的问题。本文将为大家介绍五…

Android 异常开机半屏重启代码分析

Android 的稳定性是 Android 性能的一个重要指标,它也是 App 质量构建体系中最基本和最关键的一环;如果应用经常崩溃,或者关键功能不可用,那显然会对我们的留存产生重大影响所以为了保障应用的稳定性,我们首先应该树立…

【JavaEE 初阶(六)】网络编程

❣博主主页: 33的博客❣ ▶️文章专栏分类:JavaEE◀️ 🚚我的代码仓库: 33的代码仓库🚚 🫵🫵🫵关注我带你了解更多网络知识 目录 1.前言2.浅谈网络2.1基本知识2.2.OSI与TCP/IP 3.网络编程3.1TCP与UDP区别3.2UDP网路编程…

webpack生成模块关系依赖图示例:

npm i -D webpack-bundle-analyzer core-js babel-loaderwebpack.config.js const BundleAnalyzerPlugin require(webpack-bundle-analyzer).BundleAnalyzerPlugin; module.exports {entry: ./src/index.js,output: {filename: main.js,},// mode: production, // 或者 produ…

圈子系统开发,圈子系统源码, 圈子论坛系统,兴趣社区圈子论坛,一站式搭建,前端uniapp,后端think PHP

简述 圈子论坛社区系统,含完整的后台PHP系统。功能:小程序授权登陆,H5和APP,手机号登陆,发帖,建圈子、发活动。圈主可置顶推荐帖子,关注、点赞、评论、交流等。可作为圈子贴吧等自媒体。 兴趣…

gradle 共享存储挂载缓存目录的问题

2个任务同时构建的时候,报错如上。 原因:挂载目录的问题导致的,挂在最小粒度的目录下。 /home/app/.gradle/caches/modules-2/files-2.1 挂载到这个级别的目录下。

AR项目开发框架及特点

AR项目开发框架是指用于构建AR应用程序的软件平台。它们通常提供一组API和工具,用于创建3D模型、跟踪设备位置、并将虚拟对象叠加到现实世界中。AR项目开发框架被广泛应用于各种应用,例如游戏、教育、购物、导航和协作等。北京木奇移动技术有限公司&…