多线程的代码案例

目录

单例模式

饿汉模式

懒汉模式

阻塞队列

 生产者消费者模型意义:

阻塞队列使用方法

实现阻塞队列

阻塞队列实现生产者消费者模型

定时器

实现简单的定时器

工厂模式

线程池

为啥呢? 从池子里面取 比 创建线程 效率更高

线程池的创建

怎么填坑

ThreadPoolExecutor

线程数目设置

 实现线程池

 小结


两个设计模式: 单例模式, 工厂模式

单例模式

有些场景中希望有些类仅仅创建一个对象, 代码中很多管理数据的对象都是单例的, MySQL JDBC等.

人可能会出错, 需要编译器帮我们做出监督. 就比如 @Override 必须是方法重写.,在语法层面上没有对单例做出支持, 只能通过编程技巧实现

饿汉模式

刚开始就创建了实例举个例子:

//期望这个类能有唯一实例
class Singleton {//设置为静态变量在 Singleton 类被加载时会创建实例private static Singleton instance = new Singleton();//获取实例public static Singleton getInstance() {return instance;}//把构造方法设为 私有 , 类外面的代码无法 new 出类对象了.private Singleton() {};
}

注意:

1> 在类的内部提供线程的实例

2> 把构造方法设为 private ,避免其他代码创建实例.

懒汉模式

先判断是否需要创建实例举个例子:

//期望这个类能有唯一实例
class SingletonLazy {private static volatile SingletonLazy instance = null;//获取实例public static SingletonLazy getInstance() {if(instance == null) {synchronized (SingletonLazy.class) {if(instance == null) {instance = new SingletonLazy();}}}return instance;}//把构造方法设为 私有 , 类外面的代码无法 new 出类对象了.private SingletonLazy() {};
}

注意:

1> 第一次判断是否为空原因:

因为加锁开销很大, 而且可能涉及到锁冲突, 所以我们增加一次判断, 不为空直接返回 instance

2> 加锁的原因:

在本操作中会出现读取和修改的操作, 会出现两个都判断为空后创建多个实例的情况.

3> 使用 volatile 原因:

指令重排序问题

编译器为了提高效率, 可能调整代码的执行顺序, 但是必须保持代码逻辑不变, 单线程没问题, 但是多线程可能有问题.

new 操作, 可能触发指令重排序

new 操作分为三步:

1. 申请内存空间

2. 在内存空间上构造对象

3. 把内存地址给 instance

可能按照 123, 132顺序执行, 1一定先执行

在多线程下, 假设  t1线程   按照1 3 2 的顺序  执行1  3后, instance非空指向一个没初始化的非法对象, 这时      t2线程   在判断instance 不为空后, 直接返回一个非法对象, 导致出现bug

使用 volatile 保证不会出现指令重排序问题

阻塞队列

多线程代码中比较常用到的一种数据结构

特殊的队列

1> 线程安全

2> 带有阻塞特性

a) 如果队列为空, 继续出队列, 就会发生阻塞, 阻塞到其他线程往队列里添加元素位置为止

b) 如果队列为满, 继续入队列, 也会发生阻塞, 阻塞到其他线程从队列中取走元素位置为止.

意义: 实现 " 生产者消费者模型 " 一种常见的多线程代码编写方式

举个例子: 包饺子

1> 每个人分别负责擀饺子皮和包饺子

2> 当擀饺子皮快了 就会在 放饺子皮的盖帘满的时候停下来等包饺子的

3> 当包饺子快了 就会停下来等 擀饺子皮的

盖帘就相当于阻塞队列

生产者 把生产出来的内容放到阻塞队列中

消费者 从阻塞队列中获取元素

 生产者消费者模型意义:

1> 解耦合

两个模块联系越紧密, 耦合就越高, 这个模型让耦合降低

2> 削峰填谷

服务器 A 给服务器 B发起请求, 不同服务器消耗的硬件资源不一样, A收到的请求发给B可能就挂了.使用削峰填谷让 B 接受的请求按照 B 的原有节奏处理情况.(这种情况一般不会持续存在, 就好比学校抢课的情况), 峰值过后 B把积压的数据处理掉

阻塞队列使用方法

在 Java 标准库里, 已经提供了现成的 阻塞队列直接使用

在标准库里, 针对 BlockingQueue 提供了两种最重要的实现方式

1> 基于数组

2> 基于链表

BlockingQueue 一般不适用 Queue 中的一些方法, 因为他们不具备阻塞的特性. 

一般使用 (put 阻塞式的入队列), (take 阻塞式的出队列)

示例: 

public class Test {public static void main(String[] args) throws InterruptedException {BlockingDeque<String> queue = new LinkedBlockingDeque<>();queue.put("111");queue.put("222");queue.put("333");queue.put("444");String elem = queue.take();System.out.println(elem);elem = queue.take();System.out.println(elem);elem = queue.take();System.out.println(elem);elem = queue.take();System.out.println(elem);elem = queue.take();System.out.println(elem);}
}

最后一次输出时发生了阻塞.

实现阻塞队列

基于普通队列加上阻塞和线程安全

普通队列基于数组 或者 基于链表

基于数组实现队列理解成一个环

class MyBlockingQueue {private String[] data = new String[1000];// 队列的起始位置private int head = 0;// 队列的结束位置的下一个位置private int tail = 0;//队列中有效元素的个数private int size = 0;//提供的方法 入队列 出队列public void put(String elem) throws InterruptedException {synchronized (this) {while(size == data.length) {this.wait();}data[size] = elem;tail++;if(tail == data.length) {tail = 0;}size++;//这个 notify 用来唤醒 take 中的 waitthis.notify();}}public String take() throws InterruptedException {synchronized (this) {while(size == 0) {this.wait();}String ret = data[head];head++;if(head == data.length) {head = 0;}size--;//这个 notify 用来唤醒 put 中的 waitthis.notify();return ret;}}
}

wait 除了可以用 notify 唤醒, 还可以用 interrupt 唤醒, 直接整个方法结束了, 因为使用了 throws 抛出异常, 这是没有什么事

如果使用 try catch 方式就会出现bug, 让 tail 把指向的元素覆盖掉了, 然后弄丢了一个元素, 而且 size 也会比数组最长长度还大.(此处不理解看http://t.csdnimg.cn/OBwXN -->中断一个线程目录)

所以在wait 返回的时候进一步确认是否当前队列是满的不是, 如果是满的继续进行wait

所以直接使用 while 判定是否是满的.

为了避免内存可见性问题, 把 volatile 加好

阻塞队列实现生产者消费者模型

package Demo2;import java.util.concurrent.BlockingDeque;
import java.util.concurrent.LinkedBlockingDeque;class MyBlockingQueue {private String[] data = new String[1000];// 队列的起始位置private volatile int head = 0;// 队列的结束位置的下一个位置private volatile int tail = 0;//队列中有效元素的个数private volatile int size = 0;//提供的方法 入队列 出队列public void put(String elem) throws InterruptedException {synchronized (this) {while(size == data.length) {this.wait();}data[tail] = elem;tail++;if(tail == data.length) {tail = 0;}size++;//这个 notify 用来唤醒 take 中的 waitthis.notify();}}public String take() throws InterruptedException {synchronized (this) {while(size == 0) {this.wait();}String ret = data[head];head++;if(head == data.length) {head = 0;}size--;//这个 notify 用来唤醒 put 中的 waitthis.notify();return ret;}}
}public class Test {public static void main(String[] args) {MyBlockingQueue queue = new MyBlockingQueue();// 消费者Thread t1 = new Thread(() -> {while(true) {try {String result = queue.take();System.out.println("消费元素: " + result);Thread.sleep(500);} catch (InterruptedException e) {throw new RuntimeException(e);}}});// 生产者Thread t2 = new Thread(() -> {int num = 1;while(true) {try {queue.put(num+ " ");System.out.println("生产元素: " + num);num++;} catch (InterruptedException e) {throw new RuntimeException(e);}}});t1.start();t2.start();}
}

定时器

约定一个时间, 时间到达之后执行某个代码逻辑, 在网络通信中很常见

 在 标准库 中有现成定时器的实现

    public static void main(String[] args) {Timer timer = new Timer();// 给定时器安排了一个任务, 预定在 xxx 时间去执行timer.schedule(new TimerTask() {@Overridepublic void run() {System.out.println("执行定时器任务");}}, 2000);System.out.println("程序启动!");}

使用匿名内部类的写法继承 TimerTask 创建出实例, 目的时重写 run, 描述任务的详细情况

当前代码也是多线程, timer 里面包含一个线程, 下图是运行结果

可以发现整个进程没有结束, 因为 Timer 内部的线程阻止了进程结束.

 Timer 里面可以安排多个任务.

    public static void main(String[] args) {Timer timer = new Timer();// 给定时器安排了一个任务, 预定在 xxx 时间去执行timer.schedule(new TimerTask() {@Overridepublic void run() {System.out.println("3000");}}, 3000);System.out.println("程序启动!");timer.schedule(new TimerTask() {@Overridepublic void run() {System.out.println("2000");}}, 2000);System.out.println("程序启动!");timer.schedule(new TimerTask() {@Overridepublic void run() {System.out.println("1000");}}, 2000);System.out.println("程序启动!");}

实现简单的定时器

1> Timer 中需要有一个线程, 扫描任务是否到时间了, 可以执行了

2> 需要一个数据结构把所有任务保存起来(使用优先级队列) 

3> 创建一个类, 通过类的对象描述一个任务(至少要包含任务内容和时间)

 其中需要记录, 绝对的时间.

import java.awt.*;
import java.util.PriorityQueue;
import java.util.Timer;
import java.util.TimerTask;// 通过这个类, 描述一个任务
class MyTimerTask implements Comparable<MyTimerTask> {// 执行的任务private Runnable runnable;// 执行任务的时间private long time;// 此处的 delay 就是 schedule 方法传入的 "相对时间"public MyTimerTask(Runnable runnable, long delay) {this.runnable = runnable;this.time = System.currentTimeMillis() + delay;}@Overridepublic int compareTo(MyTimerTask o) {// 让队首元素是最小时间的值return (int) (this.time - o.time);// 让队首元素是最大时间的值//return (int) (o.time - this.time);}public long getTime() {return time;}public Runnable getRunnable() {return runnable;}
}// 自己的定时器
// 添加元素和扫描线程是不同线程操作同一个队列, 需要加锁 <--原因之一
class MyTimer {// 使用一个数据结构, 保存所有的任务private PriorityQueue<MyTimerTask> queue = new PriorityQueue<>();// 使用这个对象作为锁对象private Object locker = new Object();public void schedule(Runnable runnable, long delay) {synchronized(locker) {queue.offer(new MyTimerTask(runnable, delay));locker.notify();}}// 扫描线程public MyTimer() {// 创建一个扫描线程Thread t = new Thread(() -> {// 扫描线程需要不停扫描看是否到达时间while (true) {try {synchronized (locker) {// 不要使用 if 作为 wait 的判定条件, 应使用while// 使用 while 是为了在唤醒之后 在再次确认一下条件while (queue.isEmpty()) {locker.wait();}MyTimerTask task = queue.peek();// 比较一下当前的队首元素是否可以执行了long curTime = System.currentTimeMillis();if (curTime >= task.getTime()) {// 执行任务task.getRunnable().run();//执行完了, 就从队列中删除queue.poll();} else {// 不可执行, 先等着, 等待下一轮的循环判定locker.wait(task.getTime() - curTime);}}}catch (InterruptedException e) {e.printStackTrace();}}});t.start();}
}public class Demo2 {public static void main(String[] args) {MyTimer timer = new MyTimer();timer.schedule(new Runnable() {@Overridepublic void run() {System.out.println("3000");}}, 3000);timer.schedule(new Runnable() {@Overridepublic void run() {System.out.println("2000");}}, 2000);timer.schedule(new Runnable() {@Overridepublic void run() {System.out.println("1000");}}, 1000);}
}

工厂模式

线程池

线程创建/销毁 比 进程快, 但是进一步提高创建/销毁的频率, 线程的开销也不能忽视了

两种提高效率的方法:

1> 协程 (轻量级线程) 

相对于线程, 把系统调度的过程给忽略了,(程序猿手动调度), 当下比较流行(Java 标准库没有协程)

2> 线程池

兜底, 使线程不至于很慢

例子: 我是个妹子, 在谈男朋友, 一段时间后, 我不想和他好了, 就冷暴力然后分手, 分手之后再去找另一个小哥哥, 然后和另一个小哥哥好上了. 

线程池就是我在谈第一个男朋友的时候就同时和其他小哥哥搞暧昧(培养感情), 哪天想分手了直接分, 然后无缝衔接

线程池: 在使用第一个线程的时候, 提前把 2, 3, 4, 5线程创建好(培养感情), 后续想使用新的线程不必创建, 直接使用(创建线程的开销降低了)

为啥呢? 从池子里面取 比 创建线程 效率更高

从池子里取, 就是纯粹用户态操作

创建新的线程需要 用户态 + 内核态 相互配合 完成

操作系统是由 内核 + 配套的应用程序 构成

内核 是系统最核心的部分, 创建线程操作需要调用系统 api, 进入到内核中, 按照内核态的方式来完成一系列动作

当你想要创建线程的时候, 内核需要给所有进程提供服务, 不可控, 难以避免会做一些其他的事导致效率减低

线程池的创建

Java标准库提供了写好的线程池.

创建线程池对象并没有 new , 而是通过专门的方法返回了一个线程池对象(工厂模式), 通常创建对象使用 new , new 就会触发类的构造方法, 但构造方法存在一定的局限性. 工厂模式是给构造方法填坑的.

怎么填坑

我们构造一个对象希望有多种构造方式, 这就需要多个构造方法, 但是构造方法的名字必须是类名, 不同的构造方法只能通过 重载区分, 但是如果实现方法不一样, 但是参数类型/个数一样咋办呢?

使用工厂设计模式, 使用普通的方法代替构造方法完成初始化工作, 普通方法使用名字区分.

 Executors 是一个 工厂类, newCachedThreadPool 是工厂方法, 使用静态方法通过类名调用

工厂方法有很多, 上述方法创建出来的线程池对象的线程数目可以动态适应, 随着王线程池里面添加任务, 线程池中的线程自动创建, 创建出来在池子里保留一定时间以备后续使用.

这个方法是固定的线程池, 调用方法时手动指定创建几个线程

 还用很多其他线程池上面介绍的两种用的更多一点

ThreadPoolExecutor

上述工厂方法生成的线程池本质上是对 类(ThreadPoolExecutor) 的封装

核心方法:

1> 添加任务

2> 构造

举例:  1> 添加任务 (简单) 

使用 submit 把任务交给线程池

import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;public class Demo3 {public static void main(String[] args) {ExecutorService service = Executors.newFixedThreadPool(4);service.submit(new Runnable() {@Overridepublic void run() {System.out.println("hello");}});}
}

 2> 构造方法 (重点)

构造方法中参数很多[经典面试题]

在 juc 包里面, 并发编程相关内容 

全部参数 如下图:

对这 4 种情况 举个例子:

我有 任务 A 要做, 朋友来让我帮忙做任务 B, 这时我有 4 种回应方法.

1> 我心态崩了, 大哭. 抛出异常

2> 我对朋友说你自己做, 朋友自己做任务 B

3> 我的任务 A 不做了, 就去帮朋友

4> 我直接拒绝帮忙, 我仍然做任务 A , 朋友也不做任务 B 了

线程数目设置

使用线程池需要设置线程的数目, 设置多少合适?

具体数目是不对的, 需要实际情况分析

原因:

一个线程执行代码主要有两类:

1> cpu 密集型: 代码主要是进行 算术运算/逻辑判断

2> IO密集型: 代码里主要进行的是 IO 操作

如果是 1>  这个时候线程池的数量不要超过 N (设 N 就是极限), 比 N 更大, 就无法提高效率了, cpu吃满了, 线程越多反而增加调度的开销

如果是 2>  不吃 CPU, 此时设置的线程数可以超过 N, 一个核心可以通过调度的方式来并发执行.

 实现线程池

class MyThreaPool {// 任务队列private BlockingDeque<Runnable> queue = new ArrayBlockingQueue<>();// 通过这个方法, 把任务添加到队列中public void submit(Runnable runnable) throws InterruptedException {//此处策略是第 5 种, 拒绝策略, 阻塞等待queue.offer(runnable);}public MyThreaPool(int n) {// 创建出 n 个线程, 负责执行上述队列中的任务for (int i = 0; i < n; i++) {Thread t = new Thread(() -> {// 让这个线程从队列中消费任务,并进行执行try {Runnable runnable = queue.take();runnable.run();} catch (InterruptedException e) {e.printStackTrace();}});t.start();}}
}

 小结

认真学习各种多线程代码实例, 理解其中的含义, 将各个代码的的易错点分析透彻

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/704402.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

27.哀家要长脑子了!

目录 1.316. 去除重复字母 - 力扣&#xff08;LeetCode&#xff09; 2. 1209. 删除字符串中的所有相邻重复项 II - 力扣&#xff08;LeetCode 哎哟 烦死了 刚刚不小心退出又没保存 又要写一遍 烦死了 最近刷题不得劲啊 感觉这脑子没长一点 1.316. 去除重复字母 - 力扣&am…

java技术:nacos

目录 一、docker安装 1、创建一个nacos 2、复制配置信息出来&#xff08;方便修改配置文件&#xff09; 3、删除nacos 4、修改配置文件&#xff08;主要是一下几个&#xff09; 6、创建数据库 nacos 7、重启nacos mysql 一、docker安装 1、创建一个nacos docker run …

腾讯中视频项目,日均收益1000+,简单搬运无限做,执行就有收入

兄弟们今天给大家分享的项目-腾讯视频的中视频计划项目&#xff0c;项目简单&#xff0c;低门槛&#xff0c;不需要考虑带货等问题&#xff0c;是2024年目前最火的变现赛道了。 因为目前来说的话&#xff0c;腾讯视频中视频是刚开始启动&#xff0c;是项目的红利期&#xff0c;…

(C语言)队列实现与用队列实现栈

目录 1.队列 1.1队列的概念及结构 1.2 队列的实际应用联想 1.3队列的实现 2. 队列应用——队列实现栈 主要思路 1.队列 1.1队列的概念及结构 队列&#xff1a;只允许在一端进行插入数据操作&#xff0c;在另一端进行删除数据操作的特殊线性表&#xff0c;队列具有先进…

Python 渗透测试:子域名查询.

什么是 子域名查询. 子域名查询是指通过域名系统(DNS)查找某个域名下的子域名信息。子域名是域名层级结构中的一部分,位于主域名的下一级。子域名查询是网络安全评估和渗透测试中的一个重要步骤,可以帮助安全研究人员更好地了解目标系统的架构和潜在的安全隐患。但在进行子域名…

【C语言习题】12.扫雷游戏

文章目录 1.扫雷游戏分析和设计1.1 扫雷游戏的功能说明1.2游戏界面&#xff1a;1.3游戏的分析和设计1.2.1 数据结构的分析1.2.2 ⽂件结构设计 2.扫雷游戏的代码实现3.代码讲解 1.扫雷游戏分析和设计 1.1 扫雷游戏的功能说明 使用控制台实现经典的扫雷游戏游戏可以通过菜单实现…

07-Fortran基础--Fortran指针(Pointer)的使用

07-Fortran基础--Fortran指针Pointer的使用 0 引言1 指针&#xff08;Poionter&#xff09;的有关内容1.1 一般类型指针1.2 数组指针1.3 派生类(type)指针1.4 函数指针 2 可运行code 0 引言 Fortran是一种广泛使用的编程语言&#xff0c;特别适合科学计算和数值分析。Fortran 9…

第9章.Keil5-MDK软件简介

目录 0. 《STM32单片机自学教程》专栏 9.1 主界面 9.2 文本格式编辑 9.3 代码提示&语法检测&代码模版 9.4 其他小技巧 9.4.1 TAB 键的妙用 9.4.2 快速定位函数/变量被定义的地方 9.4.3 快速注释与快速消注释 9.4.4 快速打开头文件 9.4.5 查找替换…

数据结构初阶 顺序表的补充

一. 题目的要求 写出三种链表的接口函数 它们的功能分别是 1 查找数的位置 2 在pos位置插入值 3 在pos位置删除值 二. 实现pos 这个其实很简单 找到一步步遍历 找到这个数字就返回 找不到就提示用户下 这个数字不存在 int SLFind(SL* ps,SLDateType x) {assert(ps);int…

醉了,面个功能测试,还问我Python装饰器

Python 装饰器是个强大的工具&#xff0c;可帮你生成整洁、可重用和可维护的代码。某种意义上说&#xff0c;会不会用装饰器是区分新手和老鸟的重要标志。如果你不熟悉装饰器&#xff0c;你可以将它们视为将函数作为输入并在不改变其主要用途的情况下扩展其功能的函数。装饰器可…

[ciscn 2022 东北赛区]math

1.题目 import gmpy2 from Crypto.Util.number import * from flag import flag assert flag.startswith(b"flag{") assert flag.endswith(b"}") messagebytes_to_long(flag) def keygen(nbit, dbit):if 2*dbit < nbit:while True:a1 getRandomNBitIn…

(实测验证)【移远EC800M-CN 】TCP 透传

引言 本文章使用自研“超小体积TTL转4GGPS集成模块”进行实测验证&#xff1b; 1、配置移远EC800M-CN TCP 透传 串口助手发送&#xff1a; ATQIOPEN1,0,"TCP","36.137.226.30",39755,0,2 //配置服务器地址和端口号&#xff1b; 4G模组返回…