STM32快速入门(定时器之输入捕获)

STM32快速入门(定时器之输入捕获)

前言

本节主要讲解STM32利用通用定时器,在输入引脚出现指定电平跳变时,将CNT的值锁存到CCR寄存器当中,从而计算PWM波形的频率、占空比、脉冲间隔、电平持续时间等。其功能的应用有:波形采样。

导航

图98 通用定时器框图:

总览图

图片引自STM32 F1XX系列的中文参考手册。在通用定时器章节的定时器架构图中,本章讲解的定时器输入捕获功能位于左下角的红色矩形中。

定时器输入捕获的实现细节

参考中文手册,实现细节图123如下:

捕获设计的细节

它内部实现是:根据用户设定的极性,采集输入方波信号上升沿/下降沿,将每次上升沿/下降沿的CNT寄存器的值抓取到CCR寄存器中,从而可以获取到输入信号的特性。

参考图123,从左向右介绍控制细节

对于一个通用定时器,有四个通道可作为输入(或输出),信号输入进来首先会经过滤波器进行滤波,消除不稳定的干扰信号,用户可以通过配置 TIMx_CCMR1.IC1F[7:4] 选择采样模式,可以以不同频率不同次数进行采样滤波。如下图。

滤波器的配置

采样可选频率来源有F_CK_INT和F_DTS。其中,F_CK_INT就是定时器的内部时钟(F103默认72M HZ),而F_DTS其实间接取自F_CK_INT的分频。通过配置 TIMx_CR1.CKD[9:8] 可设置F_DTS的分频系数。如下:

DTS频率配置

经过滤波器滤波后的信号在图123中被标记为TI1F,TI1F会传入中间部分的边沿检测器,边沿检测器会根据输入的TI1F分拣出波形的每个上升沿和下降沿,根据输入信号的每一个上升沿/下降沿,向上升沿输出引脚/下降沿引脚输出一个小方波,从而给后面的选择器进行选择,图中间部分有上下两个矩形,在中文手册中,所有类似这样的矩形都是选择器, TIMx_CCER.CC1P[1] 正是通过控制选择器来实现极性的选择。经过极性选择后的波形在图123被标记为TI1FP1。图中还有一个被标记为TI1F_ED的输出,TI1FP1和TI1F_ED的区别是前者是经过选择的上升沿是下降沿的边沿指示信号,而后者是上升沿下降沿的边沿指示信号,频率上来讲TI1F_ED会更高。注意这里边沿指示信号和源信号的区别,我最开始看这张图的中间部分就非常迷糊。

接着看右边最大的那个选择器,该选择器就是配置三路的哪一路作为IC1的输入。三路输入分别是:TI1FP1(对应TIMX_CH1)、TI2FP1(对应TIMX_CH2)、TRC(主从模式下,来自主定时器的信号),通过配置 TIMx_CCMR1.CC1S[1:0] 可以控制选择器选择哪一路。同时后面的预分频器可以通过 TIMx_CCMR1.IC1PSC[3:2] 来调节。如下图60:

CC1S_IC1PSC

最后配置使能寄存器 TIMx_CCER.CC1E[0] 就能使能定时器的输入啦!

精妙设计一

细心的读者在看到图98 红色矩形部分时,应该会注意通道TIMX_CH1和通道TIMX_CH2中间部分是存在交叉的,这里放一张特写图。

Cross

这TI1FP1和TI1FP2的信号源都是来自TIMX_CH1,图123的描述其实有些瑕疵。TI1FP1和TI1FP2的信号源相同,并且可以分别独立的控制去选择极性。也就是说完整的图123应该是有两路TI1FP的,并且可以单独的控制其极性。 如果只使用一路的捕获,我们一次只能测量信号源的频率;而有了这种交叉的设计,我们就可以实现对一个信号源,同时测量其频率和占空比。图60表述了将ICX映射到哪一路,通过配置 TIMx_CCMR1.CC1S[1:0] 可以选择。

精妙设计二

STM32 F1XX里面定时器的设计特别精妙,利用好定时器的主从模式可以实现硬件全自动化复位操作。比如:我们可以利用TI1FP1的信号实现定时器的自动复位,步骤如下:

  1. 配置 TIMx_SMCR.TS[6:4] 为101,这样滤波后的定时器输入1(TI1FP1)作为定时器触发源。 这里的主次好像是两个定时器,但实际上都是一个定时器扮演。

  2. 配置 TIMx_SMCR.SMS[2:0] 为100,这样在收到TI1FP1的触发信号就会将定时器复位。从而达到清零的目的。

涉及的寄存器如下:

AutoReset

此外,还可以实现定时器级联的效果,比如使用一个定时器作为另一个定时器的预分频。根据中文参考手册配置步骤如下:

MSPSC

除了上面提到的用法,定时器其实还要很多奇妙的用法。具体可以查询中文参考手册。中文参考手册很多东西写的其实非常详细了,就是初学者来说,可能很难耐心去阅读。这点真的要好好锤炼,中文都看不下去,更何况以后还要接触英文的。

定时器实现输入捕获的步骤

综上,可以总结出配置定时器输入部分的套路:

  1. 通过 TIMx_CCMR1.IC1F[7:4] 配置滤波器,选择其频率和采样次数。

  2. 通过 TIMx_CCER.CC1P[1] 配置要捕获的极性(上升沿还是下降沿)。

  3. 通过 TIMx_CCMR1.CC1S[1:0] 可以配置图123中,右边那个最大的选择器,选择三路的哪一路作为IC1的来源。

  4. 通过 TIMx_CCMR1.IC1PSC[3:2] 可以配置图123中,右边那个分频器的分频系数。

  5. 通过 TIMx_CCER.CC1E[0] 可以使能捕获输入。

定时器实现输入捕获的库函数实现

本节输入捕获实验会复用定时器输出PWM(输出在PB5口)的呼吸灯实验的代码,经过查表,会将原PB5端口输出的PWM信号使用杜邦线,引到PA0端口并且作为TIM2定时器输入。 IO口需要的配置如下:

GPIOCfg.

AFIO

核心代码如下:

void LunarInitTIM3() {GPIO_InitTypeDef GPIOB5_Cfg;TIM_TimeBaseInitTypeDef TIM3_Cfg;TIM_OCInitTypeDef TIM3_OCCfg;// 配置GPIO 	BEGIN// 开启复用时钟RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO, ENABLE);// 部分重映射GPIO_PinRemapConfig(GPIO_PartialRemap_TIM3, ENABLE);// 初始化GPIOB5为推挽复用输出RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);GPIOB5_Cfg.GPIO_Mode = GPIO_Mode_AF_PP;GPIOB5_Cfg.GPIO_Pin = GPIO_Pin_5;GPIOB5_Cfg.GPIO_Speed = GPIO_Speed_2MHz;GPIO_Init(GPIOB, &GPIOB5_Cfg);// 配置GPIO 	END// 定时器时基配置   BEGIN// 打开TIM3所需要的时钟 APB1RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);TIM_TimeBaseStructInit(&TIM3_Cfg);// 配置使用内部时钟 72M HzTIM_InternalClockConfig(TIM3);// 这里配置定时器更新频率是1000HZTIM3_Cfg.TIM_CounterMode = TIM_CounterMode_Up;TIM3_Cfg.TIM_Period = 100 - 1;TIM3_Cfg.TIM_Prescaler = 720 - 1;TIM_TimeBaseInit(TIM3, &TIM3_Cfg);// 因为TIM_TimeBaseInit会置TIMx_EGR.UG[0]为1,产生一个更新事件,// 去同步影子寄存器的值,而该更新事件又会产生一个多余的中断,所以,// 我们需要在开启中断之前,手动清楚更新事件标志位TIM_ClearFlag(TIM3, TIM_FLAG_Update);// 定时器时基配置   END// 配置TIM3的PWM输出	BEGINTIM_OCStructInit(&TIM3_OCCfg);TIM3_OCCfg.TIM_OCMode = TIM_OCMode_PWM1;TIM3_OCCfg.TIM_OCPolarity = TIM_OCPolarity_High;TIM3_OCCfg.TIM_OutputState = TIM_OutputState_Enable;TIM3_OCCfg.TIM_Pulse = 80;TIM_OC2Init(TIM3, &TIM3_OCCfg);// 配置TIM3的PWM输出	END// 使能arr和ccr寄存器的影子功能TIM_OC2PreloadConfig(TIM3, TIM_OCPreload_Enable);TIM_ARRPreloadConfig(TIM3, ENABLE);// 使能更新中断// TIM_ITConfig(TIM3, TIM_IT_Update, ENABLE);// 开启定时器TIM_Cmd(TIM3, ENABLE);
}void LunarInitTIM2() {GPIO_InitTypeDef GPIOA0_Cfg;TIM_TimeBaseInitTypeDef TIM2_Cfg;TIM_ICInitTypeDef TIM2_IC1Cfg, TIM2_IC2Cfg;// 配置GPIO 	BEGINRCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);GPIOA0_Cfg.GPIO_Mode = GPIO_Mode_IN_FLOATING;GPIOA0_Cfg.GPIO_Pin = GPIO_Pin_0;GPIOA0_Cfg.GPIO_Speed = GPIO_Speed_2MHz;GPIO_Init(GPIOA, &GPIOA0_Cfg);// 配置GPIO 	END// 定时器时基配置   BEGIN// 打开TIM2所需要的时钟 APB1RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);TIM_TimeBaseStructInit(&TIM2_Cfg);// 配置使用内部时钟 72M HzTIM_InternalClockConfig(TIM2);// 这里配置定时器更新频率是1000HZTIM2_Cfg.TIM_CounterMode = TIM_CounterMode_Up;// TIM2_Cfg.TIM_Period = 100 - 1;TIM2_Cfg.TIM_Period = 0xffff;TIM2_Cfg.TIM_Prescaler = 720 - 1;TIM_TimeBaseInit(TIM2, &TIM2_Cfg);TIM_ClearFlag(TIM2, TIM_FLAG_Update);// 定时器时基配置   END// 配置TIM2进行输入捕获		BEGINTIM_ICStructInit(&TIM2_IC1Cfg);TIM_ICStructInit(&TIM2_IC2Cfg);TIM2_IC1Cfg.TIM_Channel = TIM_Channel_1;TIM2_IC1Cfg.TIM_ICFilter = 0x4;TIM2_IC1Cfg.TIM_ICPolarity = TIM_ICPolarity_Rising;TIM2_IC1Cfg.TIM_ICPrescaler = TIM_ICPSC_DIV1;TIM2_IC1Cfg.TIM_ICSelection = TIM_ICSelection_DirectTI;TIM_ICInit(TIM2, &TIM2_IC1Cfg);// 实现同时捕获上升下降沿。TIM2_IC2Cfg.TIM_Channel = TIM_Channel_2;TIM2_IC2Cfg.TIM_ICFilter = 0x4;TIM2_IC2Cfg.TIM_ICPolarity = TIM_ICPolarity_Falling;TIM2_IC2Cfg.TIM_ICPrescaler = TIM_ICPSC_DIV1;TIM2_IC2Cfg.TIM_ICSelection = TIM_ICSelection_IndirectTI;TIM_ICInit(TIM2, &TIM2_IC2Cfg);// 配置TIM2进行输入捕获		END// 利用从模式配置自动重置。TIM_SelectInputTrigger(TIM2, TIM_TS_TI1FP1);TIM_SelectSlaveMode(TIM2, TIM_SlaveMode_Reset);// 使能arr寄存器的影子功能	// ccr寄存器只读TIM_ARRPreloadConfig(TIM2, ENABLE);// 使能更新中断// TIM_ITConfig(TIM2, TIM_IT_Update, ENABLE);// 开启定时器TIM_Cmd(TIM2, ENABLE);
}int main() {// 初始化串口LunarInitUSART1();// 初始化定时器LunarInitTIM3();LunarInitTIM2();SYSTick_Init();int dir = 0, cr = 0;while(1) {Delay_Ms(100);printf("PWM f = %d ", 100000 / (TIM_GetCapture1(TIM2) + 1));printf("PWM f = %f \n", (float)(TIM_GetCapture2(TIM2) + 1) / (TIM_GetCapture1(TIM2) + 1));}return 0;
}

实验结果就是从串口中,我们可以看到PB5输出的PWM波形的频率和占空比值。


本章完结

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/704581.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

力扣刷题 day2

快乐数 202. 快乐数 - 力扣(LeetCode)   图: java // 快乐数 --> 19 > 1^2 9 ^2 82 > 82 > 8 ^ 2 2 ^ 2 ......public boolean isHappy(int n) {// 使用快慢指针int slow n, fast getSum(n);while (slow ! fast) {slow getSum(slo…

Typora+PicGo+Gitee设置图床,解决CSDN上传markdown文件图片加载不出来的问题(超级实用)

注: 由于gitee现在已经加上了防盗链,并且只支持1M的图片,我觉得不是很好用(可以买腾讯云或阿里云等),之后找到比较好点的图床工具也会持续更新的。(sm.ms好像还好,github网速不太稳定…

十大排序算法之->归并排序

一、归并排序简介 归并排序是一种基于分治策略的有效且稳定的排序算法。归并排序由约翰冯诺伊曼提出,是计算机科学中一个非常基础且历史悠久的算法。 归并排序利用分治法的策略,将一个大的数组拆分成几个小的子数组,这些子数组各自独立地排…

每日两题 / 236. 二叉树的最近公共祖先 124. 二叉树中的最大路径和(LeetCode热题100)

236. 二叉树的最近公共祖先 - 力扣(LeetCode) dfs统计根节点到p,q节点的路径,两条路径中最后一个相同节点就是公共祖先 /*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* …

纯血鸿蒙APP实战开发——Web获取相机拍照图片案例

介绍 本示例介绍如何在HTML页面中拉起原生相机进行拍照,并获取返回的图片。 效果预览图 使用说明 点击HTML页面中的选择文件按钮,拉起原生相机进行拍照。完成拍照后,将图片在HTML的img标签中显示。 实现思路 添加Web组件,设置…

(实测验证)【移远EC800M-CN 】GNSS功能打开和关闭关闭步骤验证

引言 本文章使用自研“超小体积TTL转4GGPS集成模块”进行实测验证; 一、打开GNSS功能 步骤一、通过 ATQGPSCFG 配置 GNSS 参数 (1)该命令用于查询和配置 GNSS 不同的设置,包括 NMEA 语句输出端口、NMEA 语句的输出类型等。 1.1…

Trinity部署、使用与原理分析

文章目录 前言1、概述1.1、整体架构1.2、trinity-main1.3、childx 2、安装与使用2.1、源码安装2.1.1 部署系统依赖组件2.1.2 使用源码安装系统 2.2、使用方法 3、测试用例3.1、Splice系统调用压力测试3.2、其它系统调用压力测试3.3、自定义系统调用压力测试 4、总结4.1、部署架…

NVM安装及VUE创建项目的N种方式

VUE 参考官网:https://cli.vuejs.org/zh/guide/ 目录 NVM安装 1.卸载node.js 2.安装nvm ​编辑​ 3.配置 4.使用nvm安装node.js 5.nvm常用命令 创建VUE项目 1.使用vue init 创建vue2(不推荐) 2.使用vue create创建vue2和3&#xff…

redis报错500

之前自己举一反三把value也给序列化了: 然后报错了: 原因是这里传入的是Integer类型,序列化的话就变为string类型了

基于springboot+vue+Mysql的大学生社团活动平台

开发语言:Java框架:springbootJDK版本:JDK1.8服务器:tomcat7数据库:mysql 5.7(一定要5.7版本)数据库工具:Navicat11开发软件:eclipse/myeclipse/ideaMaven包:…

评价决策类-层次分析法

师从江北 问题引出 归一化处理:指标的数组[a b c]归一化处理得到[a/(abc),b/(abc),c/(abc)] 因为每个指标的重要性不同,所以要加上一个权重 如何科学的确定权重,就要用到层次分析法(AHP) 模型原理 建立递阶层次结构模…

2024最新软件测试【测试理论+ 接口测试】面试题(内附答案)

一、测试理论 3.1 你们原来项目的测试流程是怎么样的? 我们的测试流程主要有三个阶段:需求了解分析、测试准备、测试执行。 1、需求了解分析阶段 我们的 SE 会把需求文档给我们自己先去了解一到两天这样,之后我们会有一个需求澄清会议, …