【if条件、for循环、数据框连接、表达矩阵画箱线图】

编程能力,就是解决问题的能力,也是变优秀的能力

From 生物技能树 R语言基础第七节

文章目录

  • 1.长脚本管理方式
    • if(F){....}
    • 分成多个脚本,每个脚本最后保存Rdata,下一个脚本开头清空再加载
  • 2.实战项目的组织方式
    • 方法(一)
    • 方法(二)
    • 在这里插入图片描述
  • 3.条件和循环
    • if条件语句
    • if(){ } 如果。。。就。。。
    • if(){ } else{ },如果。。。就。。。否则。。。
    • 重点:ifelse函数
    • ifelse()+str_detect(),王炸
    • 多个条件
    • case_when
    • 练习7-2
  • 4.for循环
    • 批量画图
    • 批量装包
  • 5.隐式循环
    • 矩阵/数据框的隐式循环-apply()族函数
    • lapply(list, FUN, …)
  • 思考题:
    • 1.如何挑出一个数里最大的5个?
  • 课后思考题:
    • 2.如何挑出一个表达矩阵里方差最大的1000个基因?(test2.Rdata里有表达矩阵)
  • 6.两个数据框的连接
    • inner_join:取交集
    • full_join:全连接
    • left_join:左连接
    • right_join:右连接
    • 练习7-3:
  • 7.表达矩阵画箱线图(难懂)
  • 8.一些顶呱呱的函数
    • 遇到报错困惑
      • 找不到文件
      • 找不到函数
      • 不存在包
      • 找不到对象
    • R语言重点
    • 1.match-----
    • 2.一些搞文件的函数----


1.长脚本管理方式

if(F){…}

1.if(F){....},则{ }里的代码被跳过
if(T){....},则{ }里的代码被运行
凡是带有{ }的代码,均可以被折叠。

if(F){a=1b=a^2d=a+b+a^2
}if(T){a=1b=a^2d=a+b+a^2
}

#凡是带有{ }的代码,均可以被折叠。在这里插入图片描述
使用情况 1:例如下载数据的代码,保留但不反复运行

分成多个脚本,每个脚本最后保存Rdata,下一个脚本开头清空再加载

在这里插入图片描述

save(pd,exp,gpl,file = "steplouput.Rdata")
#把第一个脚本产生的几个有效变量存下来了,存到Rdata里边,下次直接load Rdata

rm(list = ls()) #每个脚本运行之前都记得清空环境变量哦

为什么用Rdata而不是表格文件来衔接
1.变量,自带变量名称,不需要赋值,也没有参数
2.表格文件,需要赋值,读取参数的不同会导致读取结果不同,不能在后续代码里同等处理。
3.Rdata可以一次保存多个变量,下次只需要一次load就能得到多个数据。
4.Rdata不仅可以保存数据框,还可以保存其他任何数据结构。

2.实战项目的组织方式

方法(一)

在这里插入图片描述

方法(二)

每一步设置一个文件夹,每一个文件夹里都有一个project,一个文件夹和另一个文件夹作为工作目录的时候就涉及到工作目录的切换了

#相对路径,不推荐使用绝对路径
../  工作目录的上一级,可以访问隔壁文件夹的project

在这里插入图片描述


3.条件和循环

if条件语句

if(){ } 如果。。。就。。。

(1)只有if没有else,那么条件是FALSE时就什么都不做
提示:if()的括号里是一个逻辑值,不可以是多个逻辑值组成的向量

i = -1
if (i<0) print('up')[1] "up"if (i>0) print('up')

理解下面代码
就是之前用来装包的代码

if(!require(tidyr)) install.packages('tidyr')

if(){ } else{ },如果。。。就。。。否则。。。

(2)有else

i = -1
if (i>0){print('+')
} else {print("-")
}

重点:ifelse函数

在这里插入图片描述

> ifelse(i>0,"+","-")
[1] "-"
> x = rnorm(3)
> x
[1] -1.6343950  0.1812335  0.4729793
> ifelse(x>0,"+","-")
[1] "-" "+" "+"

ifelse()+str_detect(),王炸

library(stringr)
samples = c("tumor1","tumor2","tumor3","normal1","normal2","normal3")
k1 = str_detect(samples,"tumor");k1
[1]  TRUE  TRUE  TRUE FALSE FALSE FALSE
ifelse(k1,"tumor","normal")
[1] "tumor"  "tumor"  "tumor"  "normal" "normal" "normal"
#此刻代码也不会报错,但是输出错误
samples = c("tumor1","tumor2","tumor3","normal1","normal2","normal3")
k2 = str_detect(samples,"normal");k2
[1] FALSE FALSE FALSE  TRUE  TRUE  TRUE
ifelse(k2,"tumor","normal")
[1] "normal" "normal" "normal" "tumor"  "tumor"  "tumor" 
#更改为
ifelse(k2,"normal","tumor")
[1] "tumor"  "tumor"  "tumor"  "normal" "normal" "normal"

多个条件

#else后面直接跟if就可以实现多个条件
i = 0
if (i>0){print('+')
} else if (i==0) {print('0')
} else if (i< 0){print('-')
}[1] "0"
#两个==是比较运算

或者写嵌套,一样的效果

ifelse(i>0,"+",ifelse(i<0,"-","0"))[1] "0"

case_when

#让代码变得容易读,最后一种情况~前面写T就行
x = c(-1,-1,4,5,2,0)
case_when(x > 0 ~ "A",x == 0 ~ "0",T ~ "B")[1] "B" "B" "A" "A" "A" "0"

练习7-2

1.加载deg.Rdata,根据a、b两列的值,按照以下条件生成向量x:
#a< -1 且b<0.05,则x对应的值为down;
#a>1 且b<0.05,则x对应的值为up;
#其他情况,x对应的值为no
#统计up、down、no各出现了多少次
#提示:ifelse函数

#方法一
load("deg.Rdata")
k1 = deg$a < -1 & deg$b < 0.05
k2 = deg$a > 1 & deg$b < 0.05
x = table(case_when(k1 ~ "down",k2 ~ "up",T ~ "no"))
x
#也可以
load("deg.Rdata")
k1 = deg$a < -1 & deg$b < 0.05;table(k1)
k2 = deg$a > 1 & deg$b < 0.05;table(k2)
x = case_when(k1 ~ "down",k2 ~ "up",T ~ "no")
table(x)
#方法二
x = table(ifelse(k1,"down",ifelse(k2,"up","no")));x#运行结果down    no    up 1059 28863   853 

4.for循环

#对x里的每个元素i进行同一操作
格式:for( i in x){CODE}
for( i in 1:4){print(i)
}## [1] 1
## [1] 2
## [1] 3
## [1] 4

i遍历x的值,当运行完最后一个x的值的时候,就会停下

批量画图


#批量画图,#把画板分隔成4,#用4列画4张图
par(mfrow = c(2,2))
for(i in 1:4){plot(iris[,i],col = iris[,5])
}

在这里插入图片描述

批量装包

#批量装包
pks = c("tidyr","dplyr","stringr")
for(g in pks){if(!require(g,character.only = T))install.packages(g,ask = F,update = F)
}

5.隐式循环

矩阵/数据框的隐式循环-apply()族函数

1.apply 处理矩阵或数据框
apply(X, MARGIN, FUN, …)

其中X是数据框/矩阵名

MARGIN为1表示行,为2表示列,FUN是函数

对x的每一行/每一列进行FUN函数

rm(list = ls())
test<- iris[1:6,1:4]apply(test, 2, mean) ##对每一列求平均值
apply(test, 1, sum)  ##对每一行求总和,结果是一个向量,上面的一行是向量的名字

lapply(list, FUN, …)

对列表/向量中的每个元素实施相同的操作

lapply(1:4,rnorm)## [[1]]
## [1] -0.844006
## 
## [[2]]
## [1] 1.3602517 0.2277469
## 
## [[3]]
## [1]  0.5345012 -0.7476097 -0.8925600
## 
## [[4]]
## [1] -0.8469975  0.2791090 -0.5900125  0.3493904

#输出结果是list

思考题:

1.如何挑出一个数里最大的5个?

方法一:x = rnorm(30);xx <- sort(x,decreasing = T)head(x,5)}方法二:x = rnorm(30);xsort(x)tail(sort(x),5)#[1] 2.430152 2.030683 1.338829 1.095946 0.754246

找topn差异基因的思路,有时候依靠排序就能很好的解决

课后思考题:

2.如何挑出一个表达矩阵里方差最大的1000个基因?(test2.Rdata里有表达矩阵)

1.计算每个基因的方差
2.每个基因的方差排序
3.最后1000个数字所对应的基因

#统计元素
x = list(a = 1:10,b = rnorm(16),c = seq(1,3,0.1))
lapply(x,length)##$a
[1] 10
##$b
[1] 16
##$c
[1] 21
#查看数据类型x = list(a = 1:10,b = rnorm(16),c = seq(1,3,0.1))
lapply(x,class)##$a
[1] "integer"
##$b
[1] "numeric"
##$c
[1] "numeric"
x = list(a = 1:10,b = rnorm(16),c = seq(1,3,0.1))
sapply(x,sum)##> sapply(x,sum)a          b          c 
55.0000000 -0.4830007 42.0000000 

6.两个数据框的连接

inner_join:取交集

> test1 <- data.frame(name = c('jimmy','nicker','Damon','Sophie'), 
+                     blood_type = c("A","B","O","AB"))
> test1name blood_type
1  jimmy          A
2 nicker          B
3  Damon          O
4 Sophie         AB
> test2 <- data.frame(name = c('Damon','jimmy','nicker','tony'),
+                     group = c("group1","group1","group2","group2"),
+                     vision = c(4.2,4.3,4.9,4.5))
> test2name  group vision
1  Damon group1    4.2
2  jimmy group1    4.3
3 nicker group2    4.9
4   tony group2    4.5
> library(dplyr)
> inner_join(test1,test2,by="name")name blood_type  group vision
1  jimmy          A group1    4.3
2 nicker          B group2    4.9
3  Damon          O group1    4.2
> 

full_join:全连接

##全连接:取并集,多出来的行空着NA
> full_join(test1,test2,by="name")name blood_type  group vision
1  jimmy          A group1    4.3
2 nicker          B group2    4.9
3  Damon          O group1    4.2
4 Sophie         AB   <NA>     NA
5   tony       <NA> group2    4.5

left_join:左连接

左边表里的留下,右边表里的舍去

#左连接:以左边的数据框为准,右边多余的去掉,并连接
> left_join(test1,test2,by="name")
> name blood_type  group vision
1  jimmy          A group1    4.3
2 nicker          B group2    4.9
3  Damon          O group1    4.2
4 Sophie         AB   <NA>     NA

right_join:右连接

#右连接:以右边的数据框为准,左边多余的去掉,并连接

right_join(test1,test2,by="name")
    name blood_type  group vision
1  jimmy          A group1    4.3
2 nicker          B group2    4.9
3  Damon          O group1    4.2
4   tony       <NA> group2    4.5

练习7-3:

  1. 加载test1.Rdata,将两个数据框按照probe_id列连接在一起,按共同列取交集
load("test1.Rdata")
library(dplyr)
inner_join(dat,ids,by="probe_id")
  1. 找出logFC最小的10个基因和logFC最大的10个基因(symbol列就是基因名)
load("test1.Rdata")
library(dplyr)
#取交集两种方式
x = inner_join(dat,ids,by="probe_id")
或
x = merge(dat,ids,by="probe_id")
#正在对数据框 x 根据 logFC 列进行排序,并把排序后的数据框重新赋值给变量 x。
x = arrange(x,logFC)
#取出最大的前十个
head(x$symbol,10)
#取出最小的后十个
tail(x$symbol,10)

7.表达矩阵画箱线图(难懂)

#在R语言中,set.seed() 函数用于设置随机数生成器的种子set.seed(10086)
rnorm(10)
# 表达矩阵#设置随机种子
set.seed(10086)
#生成了随机数矩阵,共6,
创建一个63行的矩阵,包含从正态分布中抽取的18个随机数
exp = matrix(rnorm(18),ncol = 6)
#取整函数,或取小数点后几位,2为取小数点后2位
exp = round(exp,2)
#生成行名和列名
rownames(exp) = paste0("gene",1:3)
colnames(exp) = paste0("test",1:6)
#让1~3列数据都+1
exp[,1:3] = exp[,1:3]+1
exp
##输出结果print(exp)test1 test2 test3 test4 test5 test6
gene1  1.55  1.49  1.80 -0.37 -1.82 -1.62
gene2 -1.74  0.37  2.08  2.11 -0.22  1.42
gene3  1.57  1.25  1.32  2.49  0.58 -0.8

接下来进行变形的操作,让exp这个矩阵变成ggplot2可以接受的格式

首先需要把表达矩阵(宽型数据)变成长型数据:把所有的信息都置于同一行上
行名需要+1列另外放置,以防丢失

library(tidyr)
library(tibble)
library(dplyr)
#t() 函数用于转置矩阵,即交换矩阵的行和列。
dat = t(exp) %>%  
#将转置后的矩阵转换为数据框(data frame)  as.data.frame() %>%   
#这个函数将数据框的行名作为一列添加到数据框中。注意,这个函数是 tibble 包提供的,所以确保已经安装并加载了 tibble rownames_to_column() %>%  
#mutate() 函数用于添加新的列到数据框中。这里,它添加了一个名为 group 的新列,该列是通过 rep() 函数重复 "control" "treat" 字符串来生成的,每个字符串重复3次。mutate(group = rep(c("control","treat"),each = 3)) 

分步进行宽变长:
先把矩阵转置
变成数据框
把rownames变成一列
手动设置一下组别

 pdat = dat%>% pivot_longer(cols = starts_with("gene"),names_to = "gene",values_to = "count")
print(pdat)

也可以直接用宽变长的函数pivot_longer

cols=指要变成同一列的基因名

names_to指新的基因名那一列的列名

values_to指数值那一列的列名

剩下的内容会跟着一起变化

> print(pdat)
# A tibble: 18 × 4rowname group   gene  count<chr>   <chr>   <chr> <dbl>1 test1   control gene1  1.552 test1   control gene2 -1.743 test1   control gene3  1.574 test2   control gene1  1.495 test2   control gene2  0.376 test2   control gene3  1.257 test3   control gene1  1.8 8 test3   control gene2  2.089 test3   control gene3  1.32
10 test4   treat   gene1 -0.37
11 test4   treat   gene2  2.11
12 test4   treat   gene3  2.49
13 test5   treat   gene1 -1.82
14 test5   treat   gene2 -0.22
15 test5   treat   gene3  0.58
16 test6   treat   gene1 -1.62
17 test6   treat   gene2  1.42
18 test6   treat   gene3 -0.81
library(ggplot2)
p = ggplot(pdat,aes(gene,count))+geom_boxplot(aes(fill = group))+theme_bw()
p

在这里插入图片描述

8.一些顶呱呱的函数

match()
dir()
file.create()
file.exists()
file.remove()

遇到报错困惑

找不到文件

原因:工作目录有问题,应该用project打开Rstudio,在写文件的时候用tab键自动补齐

找不到函数

用tab键自动补齐,检查函数名称,是否在R包里的函数,没有加载R包

不存在包

安装即可

找不到对象

引号,或赋值

R语言重点

在这里插入图片描述

1.match-----

2.一些搞文件的函数----


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/704617.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

shell正则表达式

sort命令 以行为单位对文件内容进行排序&#xff0c;也可以根据不同的数据类型来排序 比较原则是从首字符向后&#xff0c;依次按ASCII码值进行比较&#xff0c;最后将他们按升序输出。 sort 对行内容进行升序排序 XXX | sort 选项 sort 选项 文件 常用选项&#x…

TRL校准和De-embedding的区别以及如何操作?

Fiture的性能可以在测试前利用TRL校准件移除掉&#xff0c;但是TRL的步骤比较繁琐或者说TRL校准件&#xff08;包含直通、反射、多条Line&#xff09;很难设计(如果做到很高的频率对设计和加工制造的要求都很高)&#xff0c;此时可以选择只做一根2x Through&#xff08;直通件&…

Beego 使用教程 6:Web 输入处理

beego 是一个用于Go编程语言的开源、高性能的 web 框架 beego 被用于在Go语言中企业应用程序的快速开发&#xff0c;包括RESTful API、web应用程序和后端服务。它的灵感来源于Tornado&#xff0c; Sinatra 和 Flask beego 官网&#xff1a;http://beego.gocn.vip/ 上面的 bee…

PostgreSQL(十二)报错:Tried to send an out-of-range integer as a 2-byte value: 51000

目录 一、报错场景二、源码分析三、实际原因&#xff08;更加复杂&#xff09;四、解决思路 一、报错场景 今天写了一个历史数据处理程序&#xff0c;在开发环境、测试环境都可以正常执行&#xff0c;但是放到生产环境上就不行&#xff0c;报了一个这样的错误&#xff1a; or…

FreeRTOS消息队列queue.c文件详解

消息队列的作用 消息队列主要用来传递消息&#xff0c;可以在任务与任务之间、中断与任务之间传递消息。 传递消息是通过复制的形式&#xff0c;发送方发送时需要不断复制&#xff0c;接收方接收时也需要不断复制。虽然会有内存资源的浪费&#xff0c;但是可以保证安全。 假…

Zynq UltraScale+ RFSoC 配置存储器器件

Zynq UltraScale RFSoC 配置存储器器件 下表所示闪存器件支持通过 Vivado 软件对 Zynq UltraScale RFSoC 器件执行擦除、空白检查、编程和验证等配置操 作。 本附录中的表格所列赛灵思系列非易失性存储器将不断保持更新 &#xff0c; 并支持通过 Vivado 软件对其中所列…

5.2 操作系统安装必备知识

目前操作系统安装方式接近于全自动化&#xff0c;用户无需做过多操作就能完成操作系统安装。但是操作系统安装也有其复杂的一面&#xff0c;例如固件及分区表的不同就会导致操作系统安装失败。本节主要介绍系统安装的一些必备知识。 5.2.1 BIOS 概述 BIOS(Basic Input/Output …

OpenAI 刚刚宣布了 “GPT-4o“ 免费用户开放、通过 API 可用

OpenAI 刚刚宣布了 “GPT-4o”。它可以通过语音、视觉和文本进行推理。 该模型速度提高了 2 倍&#xff0c;价格降低了 50%&#xff0c;比 GPT-4 Turbo 的速率限制高出了 5 倍。 它将对免费用户开放、通过 API 可用。 与 GPT-4 相比&#xff0c;GPT-4o 的速度和额外的编码能力…

申请一个开发者域名

申请一个开发者域名 教程 fourm.js.org 因本地没安装 hexo 环境&#xff0c;模板下载的 html

构建智能化不动产管理系统:数字化引领未来房地产行业发展

随着城市化进程的不断推进和房地产市场的持续发展&#xff0c;不动产管理系统的重要性日益凸显。在这一背景下&#xff0c;构建智能化不动产管理系统成为推动房地产行业数字化转型的关键举措。本文将深入探讨智能化不动产管理系统的构建与优势&#xff0c;助力房地产企业把握数…

【上海大学计算机组成原理实验报告】五、机器语言程序实验

一、实验目的 理解计算机执行程序的实际过程。 学习编制机器语言简单程序的方法。 二、实验原理 根据实验指导书的相关内容&#xff0c;指令的形式化表示是指采用一种规范化的符号系统&#xff0c;以更清晰、精确地描述和表示指令的逻辑功能和操作步骤。 汇编是一种编程语言…

MYSQL中的DQL

语法&#xff1a; select 字段列表 from 表名列表 where 条件列表 group by 分组字段列表 having 分组后条件列表 order by 排序字段 limit 分页参数 条件查询 语法&#xff1a; 查询多个字段&#xff1a;select 字段1&#xff0c;字段2 from表名 查询所有字段&#xff1a…