暴力数据结构之二叉树(堆的相关知识)

1. 堆的基本了解

        堆(heap)是计算机科学中一种特殊的数据结构,通常被视为一个完全二叉树,并且可以用数组来存储。堆的主要应用是在一组变化频繁(增删查改的频率较高)的数据集中查找最值。堆分为大根堆和小根堆,大根堆中任意节点的值都大于其子树中节点的值,而小根堆则相反。堆的存储方式遵循层序遍历的规则,这样可以高效地利用存储空间。在数组中,根节点的下标为0,节点的左右孩子的下标可以通过特定的公式计算得出。堆的实现通常利用动态数组,这样可以快速扩展容量而不造成空间浪费。

堆的一些性质:1.堆中某个结点的值总是不大于或不小于其父结点的值;

                         2.堆总是一棵完全二叉树。

2. 堆的实现

 我们知道堆的逻辑结构是一个完全二叉树,但是其物理结构仍然是一个数组,所以实现堆创建一个数组即可。

typedef int HPDateType;typedef struct Heap
{HPDateType* a;int size;int capacity;
}HP;void HPInit(HP* php)
{assert(php);php->a = NULL;php->capacity = php->size = 0;
}
void HPDesTroy(HP* php)
{assert(php);free(php->a);php->a = NULL;php->capacity = php->size = 0;
}void Swap(HPDateType* p1, HPDateType* p2)
{HPDateType tmp = *p1;*p1 = *p2;*p2 = tmp;
}void AdjustUp(HPDateType* a, int child)
{int parent = (child - 1) / 2;while (child > 0){if (a[child] < a[parent]){Swap(&a[child], &a[child]);child = parent;parent = (child - 1) / 2;}else{break;}}
}void HPPush(HP* php, HPDateType x)
{if (php->capacity == php->size){int newcapacity = php->capacity == 0 ? 4 : php->capacity * 2;HPDateType* tmp = (HPDateType*)realloc(php->a, sizeof(HPDateType) * newcapacity);if (tmp = NULL){perror("realloc");return;}php->a = tmp;php->capacity = newcapacity;}php->a[php->size] = x;php->size++;AdjustUp(php->a, php->size - 1);
}
void AdjustDown(HPDateType* a, int n, int parent)
{int child = parent * 2 + 1;while (child < n){if (child + 1 < n && a[child] > a[child + 1]){child++;}if (a[child] < a[parent]){Swap(&a[child], &a[parent]);parent = child;child = parent * 2 + 1;}else{break;}}
}
void HPPop(HP* php)
{assert(php);assert(php->size > 0);Swap(&php->a[0], &php->a[php->size - 1]);php->size--;AdjustDown(php->a, php->size, 0);
}HPDateType HPTop(HP* php)
{assert(php);assert(php->size > 0);return php->a[0];
}
bool HPEmpty(HP* php)
{assert(php);return php->size == 0;
}
2.1 堆的插入

大堆的父节点均大于子节点,小堆恰好相反,自然实现逻辑各不相同,这里主要有两个主要的思想就是"父子值交换","父子址交换"。解释就是(以小堆为例):

如果对一个已有的小堆插入新的数据(叶子),如果这个叶子与他的父节点相比更小,就与父节点交换,再与交换后节点所属的父节点对比,如果还是小于就继续交换。

 代码解释如下: 

当要插入数据时先将其放在叶子节点(数组尾部),通过AdjustUp函数可以实现向上比较的动作,当然插入前判断空间是否充足,适当扩容即可。

void AdjustUp(HPDateType* a, int child)
{int parent = (child - 1) / 2;while (child > 0){if (a[child] < a[parent]){Swap(&a[child], &a[child]);child = parent;parent = (child - 1) / 2;}else{break;}}
}void HPPush(HP* php, HPDateType x)
{if (php->capacity == php->size){int newcapacity = php->capacity == 0 ? 4 : php->capacity * 2;HPDateType* tmp = (HPDateType*)realloc(php->a, sizeof(HPDateType) * newcapacity);if (tmp = NULL){perror("realloc");return;}php->a = tmp;php->capacity = newcapacity;}php->a[php->size] = x;php->size++;AdjustUp(php->a, php->size - 1);
}
2.2 堆的删除

堆的删除就是将根节点与叶子节点交换后直接删除交换后的叶子节点(即最初的跟节点数据),然后将交换后的根节点逐渐向下交换,如图所示:

 通过代码展示就是,先交换根节点与叶子结点(即数组头尾交换)然后直接删除交换后的叶子结点。创建一个AdjustDown函数,逐层下沉交换后的跟节点,保持仍然是一个堆。

void AdjustDown(HPDateType* a, int n, int parent)
{int child = parent * 2 + 1;while (child < n){if (child + 1 < n && a[child] > a[child + 1]){child++;}if (a[child] < a[parent]){Swap(&a[child], &a[parent]);parent = child;child = parent * 2 + 1;}else{break;}}
}
void HPPop(HP* php)
{assert(php);assert(php->size > 0);Swap(&php->a[0], &php->a[php->size - 1]);php->size--;AdjustDown(php->a, php->size, 0);
}

3.堆排序

主要思路:升序建大堆,降序建小堆

解释:以升序为例,创建一个大堆,即根节点为最大的数据,此时要排序,就直接将根节点与叶子结点交换(数组首尾交换),然后数组末尾的下标向前移动(此时数组末尾的数据不会参与后续运算),然后将交换后的跟节点使用AdjustDown函数下沉,以此类推,最后原数组就是一个升序排列。同理小堆也是如此。

为什么升序不用小堆呢,因为小堆每一次运算都要再次创建一个数组,浪费更多的内存,可以使用但是不推荐。同理这也是为什么降序使用小堆。

具体代码如下

void HeapSort(int* a, int n)
{// 降序,建小堆// 升序,建大堆for (int i = 1; i < n; i++){AdjustUp(a, i);}int end = n - 1;while (end > 0){Swap(&a[0], &a[end]);AdjustDown(a, end, 0);--end;}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/704951.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Windows快捷命令

Windows 操作系统提供了大量的快捷命令&#xff0c;用于快速访问系统设置和管理工具。这些命令在各个版本的 Windows 中基本都适用&#xff0c;可以帮助用户快速进入各类管理工具&#xff0c;方便系统的配置和管理。如果你需要使用这些工具&#xff0c;只需按 Win R 键&#x…

【python量化交易】—— Alpha选股策略 - Qteasy自定义交易策略【附源码】

使用qteasy创建并回测Alpha选股交易策略 使用qteasy创建并回测Alpha选股交易策略策略思想第一种自定义策略设置方法&#xff0c;使用持仓数据和选股数据直接生成比例交易信号PS信号&#xff1a;第二种自定义策略设置方法&#xff0c;使用PT交易信号设置持仓目标&#xff1a;第三…

家庭主妇,宝妈在家能做什么副业有收入?

作为家庭主妇和宝妈&#xff0c;您可以考虑以下副业来增加收入 1. 在家兼职 您可以在家里做一些兼职工作&#xff0c;如数据输入、文案撰写、翻译、客服等。可以通过在线平台或社交媒体寻找这些机会。 2. 做任务 目前网上最流行的就是做任务&#xff0c;因为简单无门槛&…

图文教程 | 2024年最新VSCode下载和安装教程c/c++环境配置,json文件详解,实用插件分享

前言 &#x1f4e2;博客主页&#xff1a;程序源⠀-CSDN博客 &#x1f4e2;欢迎点赞&#x1f44d;收藏⭐留言&#x1f4dd;如有错误敬请指正&#xff01; 由于重装电脑&#xff0c;需要重新安装VsCode&#xff0c;记录安装配置过程。 一、VSCode下载 官网地址&#xff1a; Vis…

Vue3+ts(day06:路由)

学习源码可以看我的个人前端学习笔记 (github.com):qdxzw/frontlearningNotes 觉得有帮助的同学&#xff0c;可以点心心支持一下哈&#xff08;笔记是根据b站上学习的尚硅谷的前端视频【张天禹老师】&#xff0c;记录一下学习笔记&#xff0c;用于自己复盘&#xff0c;有需要学…

云曦实验室期中考核题

Web_SINGIN 解题&#xff1a; 点击打开环境&#xff0c;得 查看源代码&#xff0c;得 点开下面的超链接&#xff0c;得 看到一串base64编码&#xff0c;解码得flag 简简单单的文件上传 解题&#xff1a; 点击打开环境&#xff0c;得 可以看出这是一道文件上传的题目&#x…

三大平台直播视频下载保存方法

终于解决了视频号下载的问题&#xff0c;2024年5月15日亲测可用。 而且免费。 教程第二部分&#xff0c;有本地电脑无法下载的解决方案。 第一部分&#xff1a;使用教程&#xff08;正常&#xff09; 第1步&#xff1a;下载安装包 下载迅雷网盘搜索&#xff1a;大海福利合集…

C++语法|对象的浅拷贝和深拷贝

背景&#xff1a; 我们手写一个顺序栈&#xff0c;展开接下来的实验&#xff1a; ⭐️ this指针指向的是类在内存中的起始位置 class SeqStack { public:SqeStack(int size 10) {cout << this << "SeqStack()" << endl;pstack_ new int[size_];t…

Blender 导入资源包的例子

先到清华源下载资源包&#xff1a; Index of /blender/ | 清华大学开源软件镜像站 | Tsinghua Open Source Mirror 具体地址&#xff1a;https://mirrors.tuna.tsinghua.edu.cn/blender/demo/asset-bundles/human-base-meshes/human-base-meshes-bundle-v1.1.0.zip 解压/hum…

2024自学网络安全的三个必经阶段(含路线图)_网络安全自学路线

一、为什么选择网络安全&#xff1f; 这几年随着我国《国家网络空间安全战略》《网络安全法》《网络安全等级保护2.0》等一系列政策/法规/标准的持续落地&#xff0c;网络安全行业地位、薪资随之水涨船高。 未来3-5年&#xff0c;是安全行业的黄金发展期&#xff0c;提前踏入…

2024 手把手教你MathType 7.8中文破解版详细安装激活图文教程

MathType 7.8中文破解版是一款全球最受欢迎的专业数学公式编辑器工具软件,MathType可视化公式编辑器轻松创建数学方程式和化学公式.兼容Office Word,PowerPoint,Pages,Keynote,Numbers等700多种办公软件,用于编辑数学试卷,书籍,报刊,论文,幻灯演示等文档轻松编写各种复杂的物理…

手机怎么下载别人直播间视频

手机下载直播视频&#xff0c;您需要按照以下步骤进行操作&#xff1a; 1. 打开直播平台&#xff0c;获取正在直播的链接&#xff0c;就是直播间的地址&#xff0c;然后粘贴在直接视频解析工具里&#xff0c;就可以同步下载直播视频画面。 2. 获取直播视频解析工具方法&#…