简单记录牛客top101算法题(初级题C语言实现)BM24 二叉树的中序遍历 BM28 二叉树的最大深度 BM29 二叉树中和为某一值的路径

1. BM24 二叉树的中序/后续遍历

  要求:给定一个二叉树的根节点root,返回它的中序遍历结果。
                        在这里插入图片描述

输入:{1,2,#,#,3}
返回值:[2,3,1]

1.1 自己的整体思路(与二叉树的前序遍历大致一样)

  1. 使用二叉树的前序遍历方法,递归完成二叉树元素的访问。
  2. 先遍历二叉树,求出二叉树的结点数量以后,再申请数组,这样节省内存大小。
  3. 二叉树的前中后序遍历,只需要改变访问根结点的代码位置,其与递归左子树和右子树的位置,代表是前中后序的一种。
#include <malloc.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
int  TreeSize(struct TreeNode* root) {                           //判断二叉树有多少个结点if (root == NULL) {return 0;}return TreeSize(root->left) + TreeSize(root->right) + 1;
}                                    
void  visit_root(struct TreeNode* root, int* arr,int *a){        //访问根结点*(arr + *a) = root->val;              //存下根结点元素(*a)++;                               //索引++
}void  Preorder(struct TreeNode* root, int* arr,int *a){         //遍历二叉树if (root!=NULL) {Preorder(root->left,arr,a);        //递归左结点visit_root(root,arr,a);            //访问根结点          //如果把这一行放到下面一行,就是后序遍历,其他的代码不用变的Preorder(root->right,arr,a);       //递归右结点}}              
int* inorderTraversal(struct TreeNode* root, int* returnSize ) {          //中序遍历// int n;                                              //这里没有初始化,导致程序卡死了int n = 0;int *i = &n;int count =  TreeSize(root);                        //计算二叉树有多少结点printf("val = %d\r\n",count);int *array = (int *)malloc(count * sizeof(int));      //申请一个空数组Preorder(root, array, i);                             //遍历二叉树*returnSize = *i;return array;
}

1.2 小结

1.2.1 求二叉树结点的个数

int  TreeSize(struct TreeNode* root) {                           //判断二叉树有多少个结点if (root == NULL) {return 0;}return TreeSize(root->left) + TreeSize(root->right) + 1;
}  

  假设这个二叉树如下所示:
               在这里插入图片描述
第一次进到这个程序中:结点1不为NULL,返回的是TreeSize(结点2) + TreeSize(结点3) + 1;
运行TreeSize(结点2) :结点2不为NULL,返回的是TreeSize(结点4) + TreeSize(结点5) + 1;
运行TreeSize(结点4) :结点4不为NULL,返回的是TreeSize(NULL) + TreeSize(NULL) + 1,也就是返回的0 + 0 +1 =1;
返回上面一层TreeSize(结点5):结点5不为NULL,返回的是TreeSize(NULL) + TreeSize(NULL) + 1,也就是返回的0 + 0 +1 =1;目前TreeSize(结点2) 返回的值就是1+1+1 = 3;
运行TreeSize(结点3):结点3不为NULL,返回的是TreeSize(NULL) + TreeSize(结点6) + 1;
  运行TreeSize(结点6):结点6不为NULL,返回的是TreeSize(NULL) + TreeSize(NULL) + 1,也就是返回的0 + 0 +1 =1;目前TreeSize(结点3) 返回的值就是0+1+1 = 2;
 所以整体TreeSize(结点2) + TreeSize(结点3) + 1 = 3 + 2 + 1 = 6,也就计算出来了二叉树结点的个数。

1.2.2 使用指针时,未初始化变量初值

  使用指针时,未初始化变量初值,导致程序报错。

int n;
int *i = &n;

在这里插入图片描述

2. BM28 二叉树的最大深度

  要求:求给定二叉树的最大深度,深度是指树的根节点到任一叶子节点路径上节点的数量。最大深度是所有叶子节点的深度的最大值.
  这个题,没有什么思路,看视频讲解的方法,代码如下:

#include <stdio.h>
int maxDepth(struct TreeNode* root ){int n1 = 0;int n2 = 0;if (root == NULL) {return 0;}n1 = maxDepth(root->left);n2 = maxDepth(root->right);return n1 > n2 ?  n1 + 1 : n2 + 1;
}

  假设这个二叉树如下所示,还是以下面这个二叉树为例,看这个代码具体运行的步骤:
          在这里插入图片描述
第一次进到这个程序中:结点1(根结点)不为NULL,运行 n1 = maxDepth(根结点的左结点(结点2));
因为结点2不为NULL,此时传入结点2进入函数:运行n1 = maxDepth(结点2的左结点(结点4));
因为结点4不为NULL,此时传入结点4进入函数:运行n1 = maxDepth(结点4的左结点(NULL)),并返回了n1 =0。
因为结点4的左结点为NULL,程序会执行下面一句,n2 = maxDepth(结点4的右结点(NULL)),并返回了n2 =0。
所以对于结点4,n1 = n2=0,程序会返回1。这里也就是结点2的左结点,n1 = maxDepth(结点2的左结点(结点4)),这里的n1 = 1;
此时程序会返回到,结点2上面,运行n2 = maxDepth(结点2的右结点(结点5));
因为结点5不为NULL,此时传入结点5进入函数:运行n1 = maxDepth(结点5的左结点(NULL)),并返回了n1 =0。
因为结点5的左结点为NULL,程序会执行下面一句,n2 = maxDepth(结点5的右结点(NULL)),并返回了n2 =0。
所以对于结点5,n1 = n2=0,程序会返回1。这里也就是结点2的右结点,n2= maxDepth(结点2的右结点(结点5)),这里的n2 = 1;
此时对于结点2来说,n1=1,n2=1,所以会返回2。这里也就是结点1的左结点,n1 = maxDepth(结点1的左结点(结点2)),这里的n1 = 2;
此时程序会返回到,结点1上面,运行n2 = maxDepth(结点1的右结点(结点3));
因为结点3不为NULL,此时传入结点3进入函数:运行n1 = maxDepth(结点3的左结点(NULL)),并返回了n1 =0。
因为结点3的左结点为NULL,程序会执行下面一句,n2 = maxDepth(结点3的右结点(结点6))。
因为结点6不为NULL,此时传入结点6进入函数:运行n1 = maxDepth(结点6的左结点(NULL)),并返回了n1 =0。
因为结点6的左结点为NULL,程序会执行下面一句,n2 = maxDepth(结点6的右结点(NULL)),并返回了n2 =0。
所以对于结点6,n1 = n2 = 0,程序会返回1。这里也就是结点3的右结点,n2 = maxDepth(结点3的右结点(结点6)),这里的 n2 = 1;
此时对于结点3来说,n1 = 0,n2 = 1,所以会返回2。也就是结点1中的n2 = maxDepth(结点1的右结点(结点3)) = 2;
此时对于结点1来说,n1 = 2,n2 = 2,所以会返回3。程序结束,二叉树的最大深度是3。

3. BM29 二叉树中和为某一值的路径

  要求:给定一个二叉树root和一个值 sum ,判断是否有从根节点到叶子节点的节点值之和等于 sum 的路径。
1.该题路径定义为从树的根结点开始往下一直到叶子结点所经过的结点
2.叶子节点是指没有子节点的节点
3.路径只能从父节点到子节点,不能从子节点到父节点
4.总节点数目为n

               在这里插入图片描述

  这个题,也没有什么思路,看视频讲解的方法,代码如下:

bool bianli(struct TreeNode* root, int sum, int sum1){           //遍历一个子树,必须要返回一个值if (root == NULL) {return  false;}sum1 +=  root->val;                                          //求和if (root->left == NULL && root->right == NULL) {if (sum1 == sum){return true;}else{return false;}}bool leftHasPath  =   bianli(root->left, sum, sum1);bool rightHasPath =   bianli(root->right, sum, sum1);return  leftHasPath || rightHasPath;
}bool hasPathSum(struct TreeNode* root, int sum){//如何遍历一个子树// int * arr = (int *)malloc(1000*sizeof(int)); int a = 0;   //求和return bianli(root,sum,a);
}

  假设这个二叉树如下所示,还是以下面这个二叉树为例,看这个代码具体运行的步骤:(结点每一排依次称为结点1,2,3…)
 第一次进到这个程序中:结点1(根结点)不为NULL,sum1 = 5; 然后进入这一句:bool leftHasPath = bianli(结点2, 22, 5);
  sum1 = 5 + 4 = 9; bool leftHasPath = bianli(结点4, 22, 9); 这是结点3的左结点。
  sum1 = 9 + 1 = 10;return false; 返回上一层循环,返回到结点3, bool rightHasPath = bianli(结点5, 22, 9);因为到结点3的时候,sum1的值就是9。
  sum1 = 9 + 11 = 20; bool leftHasPath = bianli(结点7, 22, 20);
  sum1 = 20 + 2 = 22; return true;综上就是leftHasPath = false; rightHasPath = true;程序会继续运行,直到遍历完所有可能的路径。最终会返回true。
  改进代码如下,找到一条路径后就会停止(不会遍历所有的路径的):

bool findPath(struct TreeNode* node, int targetSum, int currentSum) {if (node == NULL) {return false;}currentSum += node->val;if (node->left == NULL && node->right == NULL && currentSum == targetSum) {return true;}bool foundInLeft = findPath(node->left, targetSum, currentSum);if (foundInLeft) {return true; // 找到路径,立即中断递归}bool foundInRight = findPath(node->right, targetSum, currentSum);if (foundInRight) {return true; // 找到路径,立即中断递归}return false; // 未找到路径
}bool hasPathSum(struct TreeNode* root, int sum){//如何遍历一个子树// int * arr = (int *)malloc(1000*sizeof(int)); int a = 0;   //求和return findPath(root,sum,a);
}

  假设这个二叉树如下所示,还是以下面这个二叉树为例,看这个代码具体运行的步骤:
               在这里插入图片描述
 第一次进到这个程序中:结点1(根结点)不为NULL,currentSum = 5; 然后进入这一句:bool foundInLeft = findPath(结点2, 22, 5);
 currentSum = 5 + 4 = 9; bool foundInLeft = findPath(结点4, 22, 9);
 currentSum = 9 + 1 = 10; bool foundInLeft = findPath(NULL, 22, 10); return false;并返回到了结点2了。
  bool foundInRight = findPath(结点5, 22, 9); currentSum = 9 + 11 = 20; bool foundInLeft = findPath(结点7, 22, 20);
 currentSum = 20 + 2 = 22; return true; 程序不会会继续运行,不会遍历完所有可能的路径。当找到路径后,递归会立即中断,从而停止遍历。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/70741.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

我们为什么需要API管理系统?

我们为什么需要API管理系统&#xff1f; 随着web技术的发展&#xff0c;前后端分离成为越来越多互联网公司构建应用的方式。前后端分离的优势是一套Api可被多个客户端复用&#xff0c;分工和协作被细化&#xff0c;大大提高了编码效率&#xff0c;但同时也带来一些“副作用”:…

macOS(m1/m2)破解Sublime Text和Navicat16

破解Sublime Text 说明&#xff1a;全程使用的是终端操作 1. 下载Sublime Text&#xff0c;建议使用brew下载 2. 进入到下载的app的文件夹 cd "/Applications/Sublime Text.app/Contents/MacOS/"3. 执行以下操作以确认版本是否匹配 md5 -q sublime_text | grep -i…

Spring 框架入门介绍及IoC的三种注入方式

目录 一、Spring 简介 1. 简介 2. spring 的核心模块 ⭐ 二、IoC 的概念 2.1 IoC 详解 2.2 IoC的好处 2.3 谈谈你对IoC的理解 三、IoC的三种注入方式 3.1 构造方法注入 3.2 setter方法注入 3.3 接口注入&#xff08;自动分配&#xff09; 3.4 spring上下文与tomcat整…

二十二、策略模式

目录 1、项目需求2、传统方案解决鸭子问题的分析和代码实现3、传统方式实现存在的问题分析和解决方案4、策略模式基本介绍5、使用策略模式解决鸭子问题6、策略模式的注意事项和细节7、策略模式的使用场景 以具体项目来演示为什么需要策略模式&#xff0c;策略模式的优点&#x…

【高阶数据结构】AVL树详解

文章目录 前言1. AVL树的概念2. AVL树结构的定义3. 插入&#xff08;仅仅是插入过程&#xff09;4. 平衡因子的更新4.1 为什么要更新平衡因子&#xff1f;4.2 如何更新平衡因子&#xff1f;4.3 parent更新后&#xff0c;是否需要继续往上更新&#xff1f;4.4 平衡因子更新代码实…

6G 特点及表现

6G R&D Vision: Requirements and Candidate Technologies 5G已经提出来了大移动带宽&#xff0c;低时延和大规模机器互联&#xff0c;在这个基础上&#xff0c;6G加上了高可靠性&#xff0c;高定位精度和高智能化。 6G的主要候选技术&#xff0c;包括(子) THz 通信&#x…

微信小程序前后端开发快速入门(完结篇)

这篇是微信小程序前后端快速入门完结篇了&#xff0c;今天利用之前学习过的所有知识做一个新的项目「群登记助手v1.0」小程序。 整体技术架构&#xff1a;小程序原生前端小程序云开发。 经历了前面教程的学习&#xff0c;大家有了一定的基础&#xff0c;所以本次分享重心主要是…

【日常积累】HTTP和HTTPS的区别

背景 在运维面试中&#xff0c;经常会遇到面试官提问http和https的区别&#xff0c;今天咱们先来简单了解一下。 超文本传输协议HTTP被用于在Web浏览器和网站服务器之间传递信息&#xff0c;HTTP协议以明文方式发送内容&#xff0c;不提供任何方式的数据加密&#xff0c;如果…

《QT+PCL》点云的点选与框选

《QT+PCL》点云的点选与框选 效果展示关键代码对应Qt6与pcl1.13对应Qt6与pcl1.12对应Qt5与pcl1.12对应Qt5与pcl1.11资源效果展示 关键代码 对应Qt6与pcl1.13 点选 //点选--------------回调函数 void MainWindow::pp_callback_PointsSelect(const

⛳ Java 反射

目录 ⛳ Java 反射&#x1f3a8; 一、反射概述**&#x1f383; 使用反射的前提条件: **&#x1f3b2; 类正常加载过程如下图&#xff1a;反射优缺点&#xff1a;&#x1f9f8; Java反射机制提供的功能: **&#x1f945; 反射主要API** &#x1f3ed; 二、反射的使用&#x1f3a…

AUTOSAR NvM Block的三种类型

Native NVRAM block Native block是最基础的NvM Block&#xff0c;可以用来存储一个数据&#xff0c;可以配置长度、CRC等。 Redundant NVRAM block Redundant block就是在Native block的基础上再加一个冗余块&#xff0c;当Native block失效&#xff08;读取失败或CRC校验失…

快速实现SAP的移动化和流程优化

热门议题&#xff1a; 1、企业如何快速解决人员移动办公的需求&#xff0c;比如在苹果安卓手机&#xff0c;平板电脑&#xff0c;MAC登录SAP。2、企业如何解决用户经常抱怨的流程复杂&#xff0c;操作繁琐&#xff0c;难以使用等问题 公司介绍&#xff1a; Synactive,Inc. 是…