数据结构刷题训练:用栈实现队列(力扣OJ)

目录

前言

1. 题目:用栈实现队列

2. 思路

3. 分析

 3.1 定义 “ 队列 ”

 3.2 创建队列

3.3 入队

 3.4 队头数据

 3.5 出队

 3.6 判空和销毁

4.题解

总结


前言

        栈和队列是数据结构中的两个重要概念,它们在算法和程序设计中都有着广泛的应用。本文将带你深入了解如何使用栈来模拟实现队列,让你在解决问题时更加灵活和创新,便于大家更深入的理解栈和队列。


1. 题目:用栈实现队列

 题目描述:

 题目链接:

用栈实现队列icon-default.png?t=N6B9https://leetcode.cn/problems/implement-queue-using-stacks/description/

2. 思路

         这道题目的解题思路于队列实现栈有很大的相似点。这道题也是给了两个栈,要求使用两个栈来实现队列。这里我们可以使用两边倒的方式来模拟实现队列。

        假设入栈:1、2、3、4那么出栈的顺序就是4、3、2、1,如果我们按照出栈的顺序再入栈到另一个栈中(空栈),再次出栈就可以达到队列出队的效果(1、2、3、4)

3. 分析

        根据上述的思路我们就可以利用两个栈模拟实现队列。思路的大概过程:

         那么我们来考虑一下特殊的情况,如果我们入队了1、2、3、4,出队了1和2,然后再入队5和6,这时候我们考虑一下是否还需要倒一次(将剩下的3和4入栈到原栈中,然后入栈5和6,再将3、4、5、6依次出栈,入栈到另外一个栈中)?

        这里其实是不需要在倒一次,入队1、2、3、4。出队1和2,然后再入队5和6,然后再出队,出队的顺序是:1、2、3、4、5、6。我们可以将5和6入栈到原栈中,然后将3和4继续出栈,当一个栈为空时再入栈原栈中的数据。过程如下:

         好的过程分析完之后,我们来对每个接口进行实现。题目中依然是没有现成的栈,所以我们依然需要 “ 造轮子 ” 前边我们已经实现的栈可以复制过来使用。

 3.1 定义 “ 队列 ”

         由于我们再模拟队列时需要用到两个栈,但调用函数时传两个栈又太麻烦,这里我们就使用结构体来定义两个栈(MyQueue),这样传参时就可以直接传结构体(MyQueue)指针就可以了。

typedef struct {Stack pushst;Stack popst;
} MyQueue;

 3.2 创建队列

         创建队列就非常简单了,我们只需要调用前边实现的InItStack函数将两个栈进行初始化就可以了:

MyQueue* myQueueCreate() {MyQueue* obj=(MyQueue*)malloc(sizeof(MyQueue));InItStack(&obj->pushst);InItStack(&obj->popst);return obj;
}

         可能对结构体不熟练的同学会有疑惑:

问题一:

        为什么要malloc一个空间?这里注意:前边我们仅仅只是定义了一个模拟实现的队列,定义的是类型,并没有创建结构体变量,这里malloc也仅仅只是创建一个结构体变量。

 问题二:

        那为什么不直接MyQueue obj;这样定义?这是在函数内部,如果这样创建结构体变量它是创建在栈区,一旦出了函数1就会被销毁,为了后续的传参,所以最好使用malloc在堆区开辟空间。

问题三:

        初始化两个栈时需要取地址,那我们可不可以在定义时直接定义成指针类型例如:

Stack* pushst;
Stack* popst;

         这当然可以,但是如果按照这样的写法,那么在创建 “队列” 时就需要malloc给两个栈开辟空间(在调用的初始化函数中并没有开辟空间给栈)。如果是这样定义:

typedef struct {Stack pushst;Stack popst;
} MyQueue;

 那么在malloc,obj时就已经将两个栈的空间开辟好了。这样也更简单便捷。

3.3 入队

         入队就很简单了,直接将数据入栈到pushst中。

void myQueuePush(MyQueue* obj, int x) {StackPush(&obj->pushst,x);
}

 3.4 队头数据

         这里为什么先写队头数据呢?那是因为出队时不仅需要将队头移除,还需要返回被移除队头的数据。所以这里我们先实现队头数据的接口。

        想要得到队头数据,那就需要将pushst中的元素按照出栈顺序入栈到popst中,然后返回popst这个栈的栈顶元素即可,过程如下:

 

int myQueuePeek(MyQueue* obj) {if(IsEmpty(&obj->popst)){while(!IsEmpty(&obj->pushst)){StackPush(&obj->popst,TopData(&obj->pushst));StackPop(&obj->pushst);}}return TopData(&obj->popst);
}

         这里注意:入栈到popst中的条件是popst为空,这也与上述的分析对应,popst栈为空时才可以继续将pushst中入队元素倒到popst中。

 3.5 出队

        有了队头数据的接口,出队接口的实现就非常简单了,在出队前保存一下队头数据(popst栈顶数据),然后将popst中的栈顶元素出栈,最后返回front即可

int myQueuePop(MyQueue* obj) {int front=myQueuePeek(obj);StackPop(&obj->popst);return front;
}

 3.6 判空和销毁

         判空和销毁的接口也非常简单,当两个栈都为空时就表明队列为空,代码如下:

bool myQueueEmpty(MyQueue* obj) {return (IsEmpty(&obj->pushst)&&IsEmpty(&obj->popst));
}

         接下来是销毁,销毁队列前我们需要先将两个栈销毁,最后销毁obj。代码如下:

void myQueueFree(MyQueue* obj) {DestoryStack(&obj->popst);DestoryStack(&obj->pushst);free(obj);
}

4.题解

整体代码如下:

typedef int Datatype;
typedef struct Stack
{Datatype* a;int top;int capacity;
}Stack;void InItStack(Stack* ps);void DestoryStack(Stack* ps);void StackPush(Stack* ps, Datatype x);void StackPop(Stack* ps);int Stacksize(Stack* ps);Datatype TopData(Stack* ps);bool IsEmpty(Stack* ps);void InItStack(Stack* ps)
{assert(ps);ps->top = 0;ps->a = NULL;ps->capacity = 0;
}void DestoryStack(Stack* ps)
{assert(ps);ps->top = ps->capacity = 0;free(ps->a);ps->a = NULL;
}
void StackPush(Stack* ps, Datatype x)
{assert(ps);if (ps->top == ps->capacity){int newcapacity = (ps->capacity == 0 ? 4 : ps->capacity * 2);Datatype* tmp = (Datatype*)realloc(ps->a, sizeof(Datatype) * newcapacity);if (tmp == NULL){perror("realloc fail");exit(-1);}ps->a = tmp;ps->capacity = newcapacity;}ps->a[ps->top] = x;ps->top++;
}
void StackPop(Stack* ps)
{assert(ps);assert(ps->top > 0);ps->top--;
}
int Stacksize(Stack* ps)
{assert(ps);return ps->top;
}
Datatype TopData(Stack* ps)
{assert(ps);assert(ps->top > 0);return ps->a[ps->top - 1];
}
bool IsEmpty(Stack* ps)
{assert(ps);return (ps->top == 0);
}typedef struct {Stack pushst;Stack popst;
} MyQueue;MyQueue* myQueueCreate() {MyQueue* obj=(MyQueue*)malloc(sizeof(MyQueue));InItStack(&obj->pushst);InItStack(&obj->popst);return obj;
}void myQueuePush(MyQueue* obj, int x) {StackPush(&obj->pushst,x);
}int myQueuePeek(MyQueue* obj) {if(IsEmpty(&obj->popst)){while(!IsEmpty(&obj->pushst)){StackPush(&obj->popst,TopData(&obj->pushst));StackPop(&obj->pushst);}}return TopData(&obj->popst);
}int myQueuePop(MyQueue* obj) {int front=myQueuePeek(obj);StackPop(&obj->popst);return front;
}bool myQueueEmpty(MyQueue* obj) {return (IsEmpty(&obj->pushst)&&IsEmpty(&obj->popst));
}void myQueueFree(MyQueue* obj) {DestoryStack(&obj->popst);DestoryStack(&obj->pushst);free(obj);
}

 

总结

        使用栈模拟实现队列,让我们在实践中深入思考了数据结构的本质和应用,为我们的编程思维和算法设计能力提供了挑战和提升。希望本期内容对你有些许帮助,最后,感谢阅读!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/71076.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

小程序多图片组合

目录 子组件 index.js 子组件 index.wxml 子组件 index.wxss 父组件引用: 子组件:preview-image 子组件 index.js Component({properties: {previewData: {type: Array,default: [],observer: function (newVal, oldVal) {console.log(newVal, ol…

【编程二三事】ES究竟是个啥?

在最近的项目中,总是或多或少接触到了搜索的能力。而在这些项目之中,或多或少都离不开一个中间件 - ElasticSearch。 今天忙里偷闲,就来好好了解下这个中间件是用来干什么的。 ES是什么? ​ ES全称ElasticSearch,是个基于Lucen…

UG NX二次开发(C#)-CAM-获取刀具类型

文章目录 1、前言2、UG NX中的刀具类型3、获取刀具类型3.1 刀具类型帮助文档1、前言 在UG NX的加工模块,加工刀具是一个必要的因素,其包括了多种类型的类型,有铣刀、钻刀、车刀、磨刀、成型刀等等,而且每种刀具所包含的信息也各不相同。想获取刀具的信息,那就要知道刀具的…

开源数据库Mysql_DBA运维实战 (修改root密码)

MySQL——修改root密码的4种方法 本文以windows为例为大家详细介绍下MySQL修改root密码的4种方法,大家可以可以根据的自己的情况自由选择,希望对大家有所帮助 方法1: 用SET PASSWORD命令 首先登录MySQL。 格式:mysql> set pass…

【回溯】总结

1、 组合和子集问题 组合问题需要满足一定要求才算作一个答案,比如数量要求(k个数),累加和要求(target)。 子集问题是只要构成一个新的子集就算作一个答案。 进阶:去重逻辑。 一般都是要对同…

Grafana Prometheus 通过JMX监控kafka 【2023最新方式】

第三方kafka exporter方案 目前网上关于使用Prometheus 监控kafka的大部分资料都是使用一个第三方的 kafka exporter,他的原理大概就是启动一个kafka客户端,获取kafka服务器的信息,然后提供一些metric接口供Prometheus使用,随意它…

【MySQL系列】-回表、覆盖索引真的懂吗

【MySQL系列】-回表、覆盖索引真的懂吗 文章目录 【MySQL系列】-回表、覆盖索引真的懂吗一、MYSQL索引结构1.1 索引的概念1.2 索引的特点1.3 索引的优点1.4 索引的缺点 二、B-Tree与BTree2.1 B-Tree2.2 BTree2.3 B-Tree 与BTree树的区别2.4 那么为什么InnoDB的主键最好要搞成有…

重发布 路由策略

[r4]ip ip_prefix 15 permit 192.168.3.0 24. 根据序号插入规则 [r4]undo ip-prefix aa index 15. 删除规则 [r4]ip ip-prefix aa permit 192.168.3.0 24 less- equal 28 抓取目标网段为3.0掩码长度为24到28的路由 [r4]ip ip-prefix aa permit 192.168.3.0 24 greate…

如何在安卓设备上安装并使用 ONLYOFFICE 文档

您可以使用文档安卓版应用,在移动设备上访问存在您 ONLYOFFICE 帐号中的文件。阅读本文,了解如何操作。 什么是 ONLYOFFICE 文档安卓版 适用于 Android 系统的 ONLYOFFICE 文档是一款全面的办公工具,您可以使用它,查看、创建、编…

MySQL— 基础语法大全及操作演示!!!(下)

MySQL—— 基础语法大全及操作演示(下)—— 持续更新 三、函数3.1 字符串函数3.2 数值函数3.3 日期函数3.4 流程函数 四、约束4.1 概述4.2 约束演示4.3 外键约束4.3.1 介绍4.3.2 语法4.3.3 删除/更新行为 五、多表查询5.1 多表关系5.1.1 一对多5.1.2 多对…

2022年09月 C/C++(二级)真题解析#中国电子学会#全国青少年软件编程等级考试

第1题&#xff1a;统计误差范围内的数 统计一个整数序列中与指定数字m误差范围小于等于X的数的个数。 时间限制&#xff1a;5000 内存限制&#xff1a;65536 输入 输入包含三行&#xff1a; 第一行为N&#xff0c;表示整数序列的长度(N < 100); 第二行为N个整数&#xff0c;…

数据结构之动态内存管理机制

目录 数据结构之动态内存管理机制 占用块和空闲块 系统的内存管理 可利用空间表 分配存储空间的方式 空间分配与回收过程产生的问题 边界标识法管理动态内存 分配算法 回收算法 伙伴系统管理动态内存 可利用空间表中结点构成 分配算法 回收算法 总结 无用单元收…