【AI应用开发全流程】使用AscendCL开发板完成模型推理

news/2025/3/17 22:33:54/文章来源:https://www.cnblogs.com/huaweiyun/p/18232893

本文分享自华为云社区《【昇腾开发全流程】AscendCL开发板模型推理》,作者:沉迷sk。

前言

学会如何安装配置华为云ModelArts、开发板Atlas 200I DK A2。
并打通一个Ascend910训练到Ascend310推理的全流程思路。

在本篇章,我们继续进入推理阶段!

推理阶段

B. 环境搭建

AscendCL 开发板 模型推理

Step1 准备硬件

基础硬件

  • 开发者套件
  • Micro SD 卡(TF卡):容量推荐不小于64GB
  • 读卡器
  • PC(笔记本或台式机)

所需配件

用于后续连接启动&登录开发者套件。

这里以远程登录模式为例

  • RJ45网线

注:

这里使用Windows系统,通过网线以远程登录模式连接启动登录开发者套件。

详细内容or选择其他系统其他模式的用户可参考昇腾官网文档-快熟开始

Step2 制卡

PC下载并安装制卡工具“Ascend-devkit-imager_latest_win-x86_64.exe”

将SD卡插入读卡器的卡槽中,接着一起插入PC的USB接口中

打开制卡工具

-> 在线制卡(镜像版本选择Ubuntu)

-> 选择SD卡(烧录镜像时会自动将SD卡格式化,需要提前检查SD卡是否有数据需要提前备份)

-> 烧录镜像(大概20min)

烧录成功后,将SD卡从读卡器中取出。

Step3 连接启动开发者套件

将烧录好的SD卡插入开发者套件的SD插槽,并确保完全推入插槽底部。(推到底是有类似弹簧的触感)

确保开发者套件的拨码开关2、3、4的开关值如图所示:

使用网线连接开发板套件和PC。

给开发者套件上电后

Step4 登录开发者套件

通过PC共享网络联网(Windows):

控制面板 -> 网络和共享中心 -> 更改适配器设置 ->

右键“WLAN” -> 属性 ->

进入“共享”界面

右键“以太网” -> 属性 ->

进入“网络”界面 -> 双击“Internet 协议版本 4(TCP/IPv4)” -> 修改IP地址与子网掩码

(PC需设置IP与开发板处于同一网段。这里使用192.168.137.102为例)

确认保存。

PC下载并解压SSH远程登录工具“MobaXterm_Personal_22.2.exe”(或者进入官网下载)

打开SSH远程登录工具“MobaXterm_Personal_22.2.exe” -> Session -> SSH

-> 填写实际与PC连接的开发者套件网口IP(制卡中配置的IP地址,默认为192.168.137.100)

-> 勾选“Specify username”选项,填写用户名(这里使用root)

-> Accept

-> 输入root用户名登录密码(默认为Mind@123)

输入密码时,界面不会显示密码和输入位数,输入密码后在键盘按Enter键即可

-> 界面会出现保存密码提示,可以单击“No”,不保存密码直接登录开发者套件。

Step5 确认开发者套件成功联网

通过能否ping通进行检验网络

输入ping 8.8.8.8或者ping www.baidu.com

若回显如图所示,则说明开发者套件还未成功联网。

请继续后续命令配置操作。

输入ip ro回显如下

删除多余的路由

输入ip ro del default via 192.168.137.1添加丢失的路由

输入sudo ip route add default via 192.168.137.102 dev eth1 metric 1

注:这里填写的IP是前文控制面板中填写的IP地址

输入ip ro回显如下

通过能否ping通进行检验网络

输入ping 8.8.8.8或者ping www.baidu.com

若回显如图所示,则说明开发者套件已经成功联网。

(若正确配置网络后仍无法联网,请参考昇腾官网文档-正确配置网络后仍无法联网)

Step6 为开发者套件添加推理阶段项目工程文件

上传

将推理阶段项目工程文件压缩包上传到开发者套套件

(可以通过拖拽文件的方法上传到MobaXterm)

解压

打开“Terminal”命令行终端界面 ->

执行以下命令,解压项目工程文件压缩包

unzip unet_sdk.zip

unzip unet_cann.zip

模型转换工程目录结构如下:

├── unet_sdk├── model│   ├──air2om.sh                     // air模型转om脚本│   ├──xxx.air                       //训练阶段导出的air模型│   ├──aipp_unet_simple_opencv.cfg   // aipp文件│   ├──xxx.om                        //训练转换产生的om模型

推理阶段工程目录结构如下:

├── unet_cann├── main.py                       // 推理文件     ├── image.png                     //图片数据├── mask.png                     //标签数据

注:

接下来就可以继续旅程,进入推理阶段。

若中途暂停或完成实验,记得将开发者套件关机和下电;
若之后返回或继续实验,再次将开发者套件开机。

如果开发板下电断开连接,重新上电后PC不会主动再次连接,
需要更新状态(例如取消网络共享+再次共享)

七. 执行推理

Step1 acl推理脚本

打开unet_cann/main.py文件

内容如下,可根据实际开发情况进行修改。

#!/usr/bin/python
# -*- coding: utf-8 -*-import cv2  # 图片处理三方库,用于对图片进行前后处理
import numpy as np  # 用于对多维数组进行计算
from albumentations.augmentations import transforms  # 数据增强库,用于对图片进行变换import acl  # acl 推理文件库
def sigmoid(x):y = 1.0 / (1 + np.exp(-x))  # 对矩阵的每个元素执行 1/(1+e^(-x))return y
def plot_mask(img, msk):""" 将推理得到的 mask 覆盖到原图上 """msk = msk + 0.5  # 将像素值范围变换到 0.5~1.5, 有利于下面转为二值图msk = cv2.resize(msk, (img.shape[1], img.shape[0]))  # 将 mask 缩放到原图大小msk = np.array(msk, np.uint8)  # 转为二值图, 只包含 01# 从 mask 中找到轮廓线, 其中第二个参数为轮廓检测的模式, 第三个参数为轮廓的近似方法# cv2.RETR_EXTERNAL 表示只检测外轮廓,  cv2.CHAIN_APPROX_SIMPLE 表示压缩水平方向、# 垂直方向、对角线方向的元素, 只保留该方向的终点坐标, 例如一个矩形轮廓只需要4个点来保存轮廓信息# contours 为返回的轮廓(list)contours, _ = cv2.findContours(msk, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)# 在原图上画出轮廓, 其中 img 为原图, contours 为检测到的轮廓列表# 第三个参数表示绘制 contours 中的哪条轮廓, -1 表示绘制所有轮廓# 第四个参数表示颜色, (0, 0, 255)表示红色, 第五个参数表示轮廓线的宽度cv2.drawContours(img, contours, -1, (0, 0, 255), 1) # 将轮廓线以内(即分割区域)覆盖上一层红色img[..., 2] = np.where(msk == 1, 255, img[..., 2])return img
# 初始化变量
pic_input = 'image.png'  # 单张图片
model_path = "../unet_sdk/model/unet_hw960_bs1.om"  # 模型路径
num_class = 2   # 类别数量, 需要根据模型结构、任务类别进行改变; 
device_id = 0   # 指定运算的Device
print("init resource stage:")
# acl初始化
ret = acl.init()
ret = acl.rt.set_device(device_id)     # 指定运算的Device
context, ret = acl.rt.create_context(device_id)      # 显式创建一个Context,用于管理Stream对象 
stream, ret = acl.rt.create_stream()     # 显式创建一个Stream, 用于维护一些异步操作的执行顺序,确保按照应用程序中的代码调用顺序执行任务
print("Init resource success")
# 加载模型
model_id, ret = acl.mdl.load_from_file(model_path)      # 加载离线模型文件, 返回标识模型的ID
model_desc = acl.mdl.create_desc()     # 初始化模型描述信息, 包括模型输入个数、输入维度、输出个数、输出维度等信息
ret = acl.mdl.get_desc(model_desc, model_id)      # 根据加载成功的模型的ID, 获取该模型的描述信息
print("Init model resource success")
img_bgr = cv2.imread(pic_input)  # 读入图片
img = cv2.resize(img_bgr, (960,960))        # 将原图缩放到 960*960 大小
img = transforms.Normalize().apply(img)      # 将像素值标准化(减去均值除以方差)
img = img.astype('float32') / 255  # 将像素值缩放到 0~1 范围内
img = img.transpose(2, 0, 1)  # 将形状转换为 channel first (3, 96, 96)
# 准备输入数据集
input_list = [img, ]  # 初始化输入数据列表
input_num = acl.mdl.get_num_inputs(model_desc)  # 得到模型输入个数
input_dataset = acl.mdl.create_dataset()    # 创建输入数据
for i in range(input_num):input_data = input_list[i]  # 得到每个输入数据# 得到每个输入数据流的指针(input_ptr)和所占字节数(size)size = input_data.size * input_data.itemsize  # 得到所占字节数bytes_data=input_data.tobytes()  # 将每个输入数据转换为字节流input_ptr=acl.util.bytes_to_ptr(bytes_data)  # 得到输入数据指针model_size = acl.mdl.get_input_size_by_index(model_desc, i)  # 从模型信息中得到输入所占字节数# if size != model_size:  # 判断所分配的内存是否和模型的输入大小相符#     print(" Input[%d] size: %d not equal om size: %d" % (i, size, model_size) + ", may cause inference result error, please check model input")dataset_buffer = acl.create_data_buffer(input_ptr, size)  # 为每个输入创建 buffer_, ret = acl.mdl.add_dataset_buffer(input_dataset, dataset_buffer)  # 将每个 buffer 添加到输入数据中
print("Create model input dataset success")
# 准备输出数据集
output_size = acl.mdl.get_num_outputs(model_desc)  # 得到模型输出个数
output_dataset = acl.mdl.create_dataset()  # 创建输出数据
for i in range(output_size):size = acl.mdl.get_output_size_by_index(model_desc, i)  # 得到每个输出所占内存大小buf, ret = acl.rt.malloc(size, 2)  # 为输出分配内存。dataset_buffer = acl.create_data_buffer(buf, size)  # 为每个输出创建 buffer_, ret = acl.mdl.add_dataset_buffer(output_dataset, dataset_buffer)  # 将每个 buffer 添加到输出数据中if ret:  # 若分配出现错误, 则释放内存acl.rt.free(buf)acl.destroy_data_buffer(dataset_buffer)
print("Create model output dataset success")
# 模型推理, 得到的输出将写入 output_dataset 中
ret = acl.mdl.execute(model_id, input_dataset, output_dataset)
# 解析 output_dataset, 得到模型输出列表
model_output = [] # 模型输出列表
for i in range(output_size):buf = acl.mdl.get_dataset_buffer(output_dataset, i)  # 获取每个输出bufferdata_addr = acl.get_data_buffer_addr(buf)  # 获取输出buffer的地址size = int(acl.get_data_buffer_size(buf))  # 获取输出buffer的字节数byte_data = acl.util.ptr_to_bytes(data_addr, size)  # 将指针转为字节流数据dims = tuple(acl.mdl.get_output_dims(model_desc, i)[0]["dims"])  # 从模型信息中得到每个输出的维度信息output_data = np.frombuffer(byte_data, dtype=np.float32).reshape(dims)  # 将 output_data 以流的形式读入转化成 ndarray 对象model_output.append(output_data) # 添加到模型输出列表
x0 = 2200  # w:2200~4000; h:1000~2800
y0 = 1000
x1 = 4000
y1 = 2800
ori_w = x1 - x0
ori_h = y1 - y0
def _process_mask(mask_path):# 手动裁剪mask = cv2.imread( mask_path , cv2.IMREAD_GRAYSCALE )# [y0:y1, x0:x1]return mask[y0:y1, x0:x1]
# 后处理
model_out_msk = model_output[0]  # 取出模型推理结果, 推理结果形状为 (1, 1, 96, 96),即(batchsize, num_class, height, width)
model_out_msk =  _process_mask("mask.png")  # 抠图后的shape, hw
# model_out_msk = sigmoid(model_out_msk[0][0])  # 将模型输出变换到 0~1 范围内
img_to_save = plot_mask(img_bgr, model_out_msk)  # 将处理后的输出画在原图上, 并返回
# 保存图片到文件
cv2.imwrite('result.png', img_to_save)
# 释放输出资源, 包括数据结构和内存
num = acl.mdl.get_dataset_num_buffers(output_dataset)  # 获取输出个数
for i in range(num):data_buf = acl.mdl.get_dataset_buffer(output_dataset, i)   # 获取每个输出bufferif data_buf:data_addr = acl.get_data_buffer_addr(data_buf)     # 获取buffer的地址acl.rt.free(data_addr)  # 手动释放 acl.rt.malloc 所分配的内存ret = acl.destroy_data_buffer(data_buf)  # 销毁每个输出buffer (销毁 aclDataBuffer 类型)
ret = acl.mdl.destroy_dataset(output_dataset)  # 销毁输出数据 (销毁 aclmdlDataset类型的数据)
# 卸载模型
if model_id:ret = acl.mdl.unload(model_id)# 释放模型描述信息
if model_desc:ret = acl.mdl.destroy_desc(model_desc)# 释放 stream
if stream:ret = acl.rt.destroy_stream(stream)# 释放 Context
if context:ret = acl.rt.destroy_context(context)# 释放Device
acl.rt.reset_device(device_id)
acl.finalize()
print("Release acl resource success")

Step2 执行脚本

打开Terminal命令行终端界面:确保是否在工程目录unet_cann/路径下

输入cd /root/project/unet_cann

运行示例,输入python3 main.py

输出结果:

注:

到此我们就已经走过了从Ascend910训练到Ascend310推理的昇腾开发全流程。

更多内容深入参考下方学习资源推荐

学习资源推荐

昇腾官网

  • 文档教程
    昇腾官网文档-CANN-推理应用开发
  • 视频教程
    昇腾官网->在线课程->昇腾推理应用开发及调优
gitee代码仓Ascend / samples
https://gitee.com/ascend/samples/tree/master/inference

点击关注,第一时间了解华为云新鲜技术~

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/720311.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

springMvc 配置 UReport2

参考:https://blog.csdn.net/qq_42207808/article/details/1122588351.配置pom.xml 引入目前最新得2.2.9版本<dependency><groupId>com.bstek.ureport</groupId><artifactId>ureport2-console</artifactId><version>2.2.9</version>…

S2P医药营销智能管理平台特点和优势

S2P医药营销智能管理平台是正也科技打造的一个专为医药行业设计的综合性营销解决方案,旨在通过智能化、数据驱动的方式提升医药企业的营销效率和效果。以下是关于S2P医药营销智能管理平台的一些主要特点和优势的分析:一、平台特点 数据整合与分析:S2P平台能够整合来自多个渠…

返回顶部按钮的组件

目录1.封装2.调用3.效果 1.封装 <template><transition :name="transitionName"><div v-show="visible" class="back-to-ceiling" @click="backToTop"><svg width="16" height="16" viewBox…

c函数堆栈

使用反汇编分析代码 1.无参数无返回值 void fun1() {}int main(int argc, char* argv[]) {fun1();return 0; }反汇编分析2.有参无返回值 代码 void fun2(int x,int y) {x + y; }int main(int argc, char* argv[]) {fun2(1,2);return 0; }返汇编分析3.无参有返回值 代码 int fun…

14-ShardingSphere的分布式主键实现

1 ShardingSphere自动生成键 MySQL自增键、Oracle自增序列等。分片场景下问题就复杂了,不能依靠单实例上的自增键来实现不同数据节点之间的全局唯一主键,分布式主键的需求应运而生。ShardingSphere 作为一款优秀分库分表开源软件,同样提供分布式主键实现机制。 1.1 Generate…

Mesh快连

Mesh快连一、名词解释 Mesh快连是一种由多个节点组成的网络系统,这些节点可以相互连接,形成一个“网状”的结构。二、如何使用有线Mesh: 网络拓扑:设备版本:3.7.12企业版。 配置要求:从设备需恢复默认配置。 拓扑说明:设备接入电源,Q6000作为主设备通过LAN口连接从设备…

【Unity】Vector3的方法

属性和方法 作用normalized 使用Vector3.normalized的一个常见场景是在物理模拟中,比如计算速度向量或在射线投射(Raycasting)中确定射线的方向。Lerp Vector3.Lerp在Unity中非常常用,尤其是在动画和游戏逻辑中,用于平滑地过渡从一个状态到另一个状态,例如角色移动、颜色…

perfers-color-scheme 使用简单介绍

perfers-color-scheme 简介 prefers-color-scheme 媒体查询属性用于检测用户操作系统是否使用深色模式。 属性值dark 表示用户操作系统使用深色模式 light 表示用户操作系统使用浅色模式 no-preference 表示用户操作系统没有偏好,或者操作系统不支持该属性示例 @media (prefer…

正则表达式学习(1)——模式

正则表达式用于处理字符和字符串,是一种强大的工具 1. 正则表达式的模式字面值字符:例如字母、数字、空格等,可以直接匹配它们自身。特殊字符:例如点号 .、星号 *、加号 +、问号 ? 等,它们具有特殊的含义和功能。字符类:用方括号 [ ] 包围的字符集合,用于匹配方括号内的…

修改软链接实现提权

在做 vulnhub bottleneck 靶机过程中,看到一个修改软链接实现提权或越权的小技巧,固记录一下 提权成功后,是 www-data 的权限,运行 sudo -l 发现系统中存在clear_logs ,可以让bytevsbyte 免密运行 尝试先把权限提升至 bytevsbyte 再考虑 提root查看 clear_logs 文件属性看…

Python数据类型转换(新)

目录Python数据类型的转换隐式类型转换显式类型转换 Python数据类型的转换 数据类型分为1.隐式类型转换 2.显式类型转换 隐式类型转换在隐式类型转换中,Python会自动将一种数据类型转换为另一种数据类型,不需要认为去干预比如在进行算术运算的时候,较低数据类型(整数)就会转换…

在modelsim中查找指定信号是否有特定值

先选中信号,然后在上方搜索框输入后按回车就可以搜索,搜索框右边分别为搜索上一个和搜索下一个。