ceph数据分布

ceph的存储是无主结构,数据分布依赖client来计算,有两个条主要路径。

1、数据到PG

2、PG 到OSD

有两个假设: 第一,pg的数量稳定,可以认为保持不变; 第二, OSD的数量可以增减,OSD的存储空间权重不等;

由于 PG的数量保持不变,由数据来找PGID的环节可以简单处理,对数据的key来取hash值再对pg的总数取模即可唯一确认pgid,pgid=hash(data_key)/pg_num。

难点在于从PG到OSD,如果直接用 hash(pgid)/osd_num的模式,则OSD有增减的时候数据就有无规律的迁移,并且也无法体现OSD的不同权重。

Crush算法就是来解决这个问题的,Crush目的是随机跳出一个OSD,并且要满足权重越大的OSD,挑中的概率越大。

每个OSD有不同的容量,比如是4T还是12T的容量,可以根据每个OSD的容量定义它的权重,以T为单位, 比如4T权重设为4,12T则设为12。

如何将PG映射到不同权重的OSD上面?这里可以直接采用CRUSH里面的Straw抽签算法。

核心步骤:

1)计算HASH

draw = CRUSH_HASH( PG_ID, OSD_ID, r ),其中把r当做一个常数,将PG_ID, OSD_ID一起作为输入,得到一个HASH值。

2)增加OSD权重

osd_straw =( draw &0xffff ) * osd_weight

draw &0xffff 得到一个0-65535的数字,再与OSD的权重相乘,以这个作为每个OSD的签长, 权重越大的,数值越大。

3)遍历选取最高的权重

high_draw

Crush所计算出的随机数,是通过HASH得出来,可以保障相同的输入会得出同样的输出结果。

这里只是计算得出了一个OSD,在Ceph集群中是会存在多个副本,如何解决一个PG映射到多个OSD的问题?

将常量r加1, 再去计算一遍,如果和之前的OSD编号不一样, 那么就选取它;如果一样的话,那么再把r+2,再重新计算,直到选出三个不一样的OSD编号。

如果样本容量足够大, 随机数对选中的结果影响逐渐变小, 起决定性的是OSD的权重,OSD的权重越大, 被挑选的概率也就越大。

样本容量足够大,到底是多大? 到底多大才能按照尽可能按照权重来分布,当然是尽量小的样本才好。

样本容量主要由PG和OSD的数量多少来决定,其中最关键的还是OSD数量,如果OSD很少(比如5块盘)也能尽量按照权重分布才好。

PG的数量主要是根据数据预估和OSD的数量来定,有个理论参考数,PG数量 =(OSD数量* 100)/副本数,但是PG数量少影响后面的扩容,太多又占用过多资源,需要有一个平衡。

基于上述考虑,写了一个很简单的程序来验证下数据分布平衡性。

假定OSD数量为5并且权重随机,PG的数量为5000。

结果1:

1.随机生成5个OSDID和对应权重

OSDID=I0N@6nt5pOhjY$g;权重=32.0

OSDID=.nIjl%3zs3aoE7K;权重=16.0

OSDID=S5O9bSS4NMo%qDN;权重=1.0

OSDID=t$lZF91ofuvOKcn;权重=24.0

OSDID=!E2Ia8XE^Jzb5Dz;权重=12.0

2.在pg数量为5000的时候,PG的分布结果:

OSDID=!E2Ia8XE^Jzb5Dz;权重=12.0;拥有的PG数量=625

OSDID=I0N@6nt5pOhjY$g;权重=32.0;拥有的PG数量=2682

OSDID=t$lZF91ofuvOKcn;权重=24.0;拥有的PG数量=1554

OSDID=.nIjl%3zs3aoE7K;权重=16.0;拥有的PG数量=139

结果2:

1.随机生成5个OSDID和对应权重

OSDID=C%EN$UM!e8nZy.R;权重=1.0

OSDID=1iTDBnZeeQ6^Uos;权重=32.0

OSDID=%EMc6a4V5cWi%7D;权重=2.0

OSDID=M7WKDUjLrQaV42D;权重=64.0

OSDID=7OVTO@l$XLE$OV$;权重=8.0

2.在pg数量为5000的时候,PG的分布结果:

OSDID=1iTDBnZeeQ6^Uos;权重=32.0;拥有的PG数量=1201

OSDID=7OVTO@l$XLE$OV$;权重=8.0;拥有的PG数量=18

OSDID=M7WKDUjLrQaV42D;权重=64.0;拥有的PG数量=3781

结果3:

1.随机生成5个OSDID和对应权重

OSDID=TSvabIIG#9IssWW;权重=12.0

OSDID=XglajmN2q3f5qRI;权重=0.8

OSDID=ZEeeX^Wp9tHaxuA;权重=0.5

OSDID=PSiiRAwddyc^ThW;权重=32.0

OSDID=nPI^YbDr0ttVzGa;权重=8.0

2.在pg数量为5000的时候,PG的分布结果:

OSDID=nPI^YbDr0ttVzGa;权重=8.0;拥有的PG数量=319

OSDID=PSiiRAwddyc^ThW;权重=32.0;拥有的PG数量=3816

OSDID=TSvabIIG#9IssWW;权重=12.0;拥有的PG数量=865

package com.test.zhangzk.crush;import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Random;public class TestCephCrush {static String str = "abcdefghijklmnopqrstuvwxyzABCDEDFGHIJKLMNOPQRSTUVWXYZ0123456789.@!#$%^&*";static Float[] factories =new Float[] {0.25f,0.5F,0.8f,1f,2f,4f,8f,12f,16f,20f,24f,32f,64f};static int pgidCount = 5000;static int osdCount = 5;public static void main(String[] args) {List<String> pgidList = getRandomPgIdList(pgidCount);List<OSDBean> osdList = getRandomOSDIdList(osdCount);HashMap<String,Integer> keyCount = new HashMap<String,Integer>();for(int i=0;i<pgidCount;i++) {float maxStraw = 0.0f;float osdFactor = 0.0f;String osdId = "";for( int j=0;j<osdCount;j++) {String key = pgidList.get(i) + osdList.get(j);int hashCode = key.hashCode() & 0xffff;float straw = hashCode * osdList.get(j).getFactor();if( maxStraw < straw) {maxStraw = straw;osdFactor = osdList.get(j).getFactor();osdId = osdList.get(j).getId();}}String key =  "OSDID="+osdId  + ";权重=" + osdFactor;Integer v = keyCount.get(key);if( v == null ) {keyCount.put(key, 1);}else {keyCount.put(key, v+1);}	}System.out.println("2.在pg数量为" + pgidCount +"的时候,PG的分布结果:");for(String k:keyCount.keySet()){System.out.println(k + ";拥有的PG数量=" +keyCount.get(k));}}private static List<String> getRandomPgIdList(int pgidCount){// TODO Auto-generated method stubList<String> pgidList = new ArrayList<String>();java.util.Random r = new Random(System.currentTimeMillis());for( int i=0;i<pgidCount;i++) {StringBuilder sb = new StringBuilder();for( int j=0;j<10;j++) {sb.append(str.charAt(r.nextInt(str.length()-1)));}pgidList.add(sb.toString());}return pgidList;}private static List<OSDBean> getRandomOSDIdList(int osdCount){System.out.println("1.随机生成"+ osdCount + "个OSDID和对应权重");// TODO Auto-generated method stubList<OSDBean> osdList = new ArrayList<OSDBean>();java.util.Random r = new Random(System.currentTimeMillis());for( int i=0;i<osdCount;i++) {StringBuilder sb = new StringBuilder();for( int j=0;j<15;j++) {sb.append(str.charAt(r.nextInt(str.length()-1)));}OSDBean osd = new OSDBean();osd.setId(sb.toString());osd.setFactor(factories[r.nextInt(factories.length)]);System.out.println( "OSDID=" + sb.toString()+ ";权重="+ osd.getFactor() );osdList.add(osd);}return osdList;}
}class OSDBean {private String id;private float factor;public String getId() {return id;}public void setId(String id) {this.id = id;}public float getFactor() {return factor;}public void setFactor(float factor) {this.factor = factor;}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/72346.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

安装和配置 Ansible

安装和配置 Ansible 按照下方所述&#xff0c;在控制节点 control.area12.example.com 上安装和配置 Ansible&#xff1a; 安装所需的软件包 创建名为 /home/curtis/ansible/inventory 的静态清单文件&#xff0c;以满足以下要求&#xff1a; node1 是 dev 主机组的成员 node2 …

软件需求-架构师之路(五)

软件需求 软件需求&#xff1a; 指用户 对系统在功能、行为、性能、设计约束等方面的期望。 分为 需求开发 和 需求管理 两大过程。 需求开发&#xff1a; 需求获取需求分析需求定义&#xff08;需求规格说明书&#xff09;需求验证&#xff1a;拉客户一起评审&#xff0c…

LeetCode150道面试经典题-- 合并两个有序链表(简单)

1.题目 将两个升序链表合并为一个新的 升序 链表并返回。新链表是通过拼接给定的两个链表的所有节点组成的。 2.示例 示例 1&#xff1a; 输入&#xff1a;l1 [1,2,4], l2 [1,3,4] 输出&#xff1a;[1,1,2,3,4,4] 示例 2&#xff1a; 输入&#xff1a;l1 [], l2 [] 输…

Sencha Ext.NET Crack,构建Blazing快速应用

Sencha Ext.NET Crack,构建Blazing快速应用 Sencha Ext.NET是一个高级的ASP.NET核心组件框架&#xff0c;它包含了强大的跨浏览器Sencha Ext JS库。通过140多个预构建和专业测试的UI组件实现企业级性能和生产效率。Sencha Ext.NET使用尖端的Web技术创建功能强大的Web应用程序&a…

item_password-获得淘口令真实url

一、接口参数说明&#xff1a; item_password-获得淘口令真实url &#xff0c;点击更多API调试&#xff0c;请移步注册API账号点击获取测试key和secret 公共参数 请求地址: https://api-gw.onebound.cn/taobao/item_password 名称类型必须描述keyString是调用key&#xff08…

ATF(TF-A) 威胁模型汇总

安全之安全(security)博客目录导读 目录计划如下&#xff0c;相关内容补充中&#xff0c;待完成后进行超链接&#xff0c;敬请期待&#xff0c;欢迎您的关注 1、通用威胁模型 2、SPMC威胁模型 3、EL3 SPMC威胁模型 4、fvp_r 平台威胁模型 5、RSS-AP接口威胁模型 威胁建模是安全…

十、RabbitMQ集群

一、clustering 1、 使用集群的原因 单台RabbitMQ遇到内存崩溃、机器故障等情况会导致服务不可用单台RabbitMQ只能满足每秒1000条的消息吞吐量 2、搭建步骤 1、准备三台虚拟机 2、修改3台机器的主机名称 分别为node1、node2、node3 vi /etc/hostname 3、配置节点的hosts文…

hive中get_json_object函数不支持解析json中文key

问题 今天在 Hive 中 get_json_object 函数解析 json 串的时候&#xff0c;发现函数不支持解析 json 中文 key。 例如&#xff1a; select get_json_object({ "姓名":"张三" , "年龄":"18" }, $.姓名);我们希望的结果是得到姓名对应…

Springboot 在 redis 中使用 Guava 布隆过滤器机制

一、导入SpringBoot依赖 在pom.xml文件中&#xff0c;引入Spring Boot和Redis相关依赖 <!-- Google Guava 使用google的guava布隆过滤器实现--><dependency><groupId>com.google.guava</groupId><artifactId>guava</artifactId><vers…

leetcode473. 火柴拼正方形(回溯算法-java)

火柴拼正方形 leetcode473 火柴拼正方形题目描述回溯算法 上期经典算法 leetcode473 火柴拼正方形 难度 - 中等 原题链接 - leetcode473 火柴拼正方形 题目描述 你将得到一个整数数组 matchsticks &#xff0c;其中 matchsticks[i] 是第 i 个火柴棒的长度。你要用 所有的火柴棍…

无法将“环境变量”项识别为 cmdlet、函数、脚本文件或可运行程序的名称(pycharm)

无法将“配置的任何一个环境变量”项识别为 cmdlet、函数、脚本文件或可运行程序的名称。 记录解决“无法将“C:......conda.exe”项识别为 cmdlet、函数、脚本文件或可运行程序的名称”以及“表达式或语句中包含意外的标记”的系列问题(VSCode开发环境)一、Conda.exe无法正常识…

如何使用CSS实现一个平滑过渡效果?

聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ 使用CSS实现平滑过渡效果⭐ 写在最后 ⭐ 专栏简介 前端入门之旅&#xff1a;探索Web开发的奇妙世界 记得点击上方或者右侧链接订阅本专栏哦 几何带你启航前端之旅 欢迎来到前端入门之旅&#xff01;这个专栏是为那些对Web开发感兴趣、刚…