在自定义数据集上使用 Detectron2 和 PyTorch 进行人脸检测

本文讲讲述如何使用Python在自定义人脸检测数据集上微调预训练的目标检测模型。学习如何为Detectron2和PyTorch准备自定义人脸检测数据集,微调预训练模型以在图像中找到人脸边界。

人脸检测是在图像中找到(边界的)人脸的任务。这在以下情况下很有用:

  • 安全系统(识别人员的第一步)

  • 为拍摄出色的照片进行自动对焦和微笑检测

  • 检测年龄、种族和情感状态以用于营销

1b5f0fcaea773df53fcb08e057aff96f.png

历史上,这是一个非常棘手的问题。大量的手动特征工程、新颖的算法和方法被开发出来以改进最先进技术。

如今,人脸检测模型已经包含在几乎每个计算机视觉包/框架中。其中一些表现最佳的模型使用了深度学习方法。例如,OpenCV提供了各种工具,如级联分类器。

在本指南中,您将学习如何:

  • 准备一个用于人脸检测的自定义数据集,以用于Detectron2

  • 使用(接近)最先进的目标检测模型在图像中查找人脸

  • 您可以将这项工作扩展到人脸识别

Detectron2

Detectron2是一个用于构建最先进的目标检测和图像分割模型的框架,由Facebook Research团队开发。Detectron2是第一个版本的完全重写。Detectron2使用PyTorch(与最新版本兼容),并且允许进行超快速训练。您可以在Facebook Research的入门博客文章中了解更多信息。

Detectron2的真正强大之处在于模型动物园中提供了大量的预训练模型。但是,如果您不能在自己的数据集上对其进行微调,那又有什么好处呢?幸运的是,这非常容易!在本指南中,我们将看到如何完成这项工作。

安装Detectron2

在撰写本文时,Detectron2仍处于alpha阶段。虽然有官方版本,但我们将从主分支克隆和编译。这应该等于版本0.1。让我们首先安装一些要求:

!pip install -q cython pyyaml == 5.1 
!pip install -q -U 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI'

然后,下载、编译和安装Detectron2包: 

!git clone https://github.com/facebookresearch/detectron2 detectron2_repo 
!pip install -q -e detectron2_repo

此时,您需要重新启动笔记本运行时以继续!

%reload_ext watermark %watermark -v -p numpy,pandas,pycocotools,torch,torchvision,detectron2
CPython 3.6.9
IPython 5.5.0
numpy 1.17.5
pandas 0.25.3
pycocotools 2.0
torch 1.4.0
torchvision 0.5.0
detectron2 0.1
import torch, torchvision
import detectron2
from detectron2.utils.logger import setup_logger
setup_logger()import globimport os
import ntpath
import numpy as np
import cv2
import random
import itertools
import pandas as pd
from tqdm import tqdm
import urllib
import json
import PIL.Image as Imagefrom detectron2 import model_zoo
from detectron2.engine import DefaultPredictor, DefaultTrainer
from detectron2.config import get_cfg
from detectron2.utils.visualizer import Visualizer, ColorMode
from detectron2.data import DatasetCatalog, MetadataCatalog, build_detection_test_loader
from detectron2.evaluation import COCOEvaluator, inference_on_dataset
from detectron2.structures import BoxModeimport seaborn as sns
from pylab import rcParams
import matplotlib.pyplot as plt
from matplotlib import rc%matplotlib inline
%config InlineBackend.figure_format='retina'sns.set(style='whitegrid', palette='muted', font_scale=1.2)HAPPY_COLORS_PALETTE = ["#01BEFE", "#FFDD00", "#FF7D00", "#FF006D", "#ADFF02", "#8F00FF"]sns.set_palette(sns.color_palette(HAPPY_COLORS_PALETTE))rcParams['figure.figsize'] = 12, 8RANDOM_SEED = 42
np.random.seed(RANDOM_SEED)
torch.manual_seed(RANDOM_SEED)

人脸检测数据

该数据集在公共领域免费提供。它由Dataturks提供,并托管在Kaggle上:图像中标有边界框的人脸。有大约500张图像,通过边界框手动标记了大约1100个人脸。

我已经下载了包含注释的JSON文件,并将其上传到了Google Drive。让我们获取它:

!gdown --id 1K79wJgmPTWamqb04Op2GxW0SW9oxw8KS

让我们将文件加载到Pandas数据框中:

faces_df = pd.read_json('face_detection.json', lines=True)

每行包含一个单独的人脸注释。请注意,多行可能指向单个图像(例如,每个图像有多个人脸)。

数据预处理

数据集仅包含图像URL和注释。我们将不得不下载这些图像。我们还将对注释进行标准化,以便稍后在Detectron2中更容易使用:

os.makedirs("faces", exist_ok=True)dataset = []for index, row in tqdm(faces_df.iterrows(), total=faces_df.shape[0]):img = urllib.request.urlopen(row["content"])img = Image.open(img)img = img.convert('RGB')image_name = f'face_{index}.jpeg'img.save(f'faces/{image_name}', "JPEG")annotations = row['annotation']for an in annotations:data = {}width = an['imageWidth']height = an['imageHeight']points = an['points']data['file_name'] = image_namedata['width'] = widthdata['height'] = heightdata["x_min"] = int(round(points[0]["x"] * width))data["y_min"] = int(round(points[0]["y"] * height))data["x_max"] = int(round(points[1]["x"] * width))data["y_max"] = int(round(points[1]["y"] * height))data['class_name'] = 'face'dataset.append(data)

让我们将数据放入数据框中,以便我们可以更好地查看:

df = pd.DataFrame(dataset)
print(df.file_name.unique().shape[0], df.shape[0])
409 1132

我们总共有409张图像(比承诺的500张少得多)和1132个注释。让我们将它们保存到磁盘上(以便您可以重用它们):

数据

让我们查看一些示例注释数据。我们将使用OpenCV加载图像,添加边界框并调整大小。我们将定义一个助手函数来完成所有这些操作:

def annotate_image(annotations, resize=True):file_name = annotations.file_name.to_numpy()[0]img = cv2.cvtColor(cv2.imread(f'faces/{file_name}'), cv2.COLOR_BGR2RGB)for i, a in annotations.iterrows():cv2.rectangle(img, (a.x_min, a.y_min), (a.x_max, a.y_max), (0, 255, 0), 2)if not resize:return imgreturn cv2.resize(img, (384, 384), interpolation = cv2.INTER_AREA)

让我们首先显示一些带注释的图像:

5cd702ae92b05f2ecba0f1a2e0cdfd68.png

f6740914dcb440fcd84269b6d24ebff5.png

这些都是不错的图像,注释清晰可见。我们可以使用torchvision创建一个图像网格。请注意,这些图像具有不同的大小,因此我们将对其进行调整大小:

2c212409437c164de8cc81fa25a9b218.png

您可以清楚地看到一些注释缺失(第4列)。这就是现实生活中的数据,有时您必须以某种方式处理它。

使用Detectron 2进行人脸检测

现在,我们将逐步介绍使用自定义数据集微调模型的步骤。但首先,让我们保留5%的数据进行测试:

df = pd.read_csv('annotations.csv')IMAGES_PATH = f'faces'unique_files = df.file_name.unique()train_files = set(np.random.choice(unique_files, int(len(unique_files) * 0.95), replace=False))
train_df = df[df.file_name.isin(train_files)]
test_df = df[~df.file_name.isin(train_files)]

在这里,经典的训练测试分割方法不适用,因为我们希望在文件名之间进行分割。

接下来的部分以稍微通用的方式编写。显然,我们只有一个类别-人脸。但是,添加更多类别应该就像向数据框中添加更多注释一样简单:

classes = df.class_name.unique().tolist()

接下来,我们将编写一个将我们的数据集转换为Detectron2:

def create_dataset_dicts(df, classes):dataset_dicts = []for image_id, img_name in enumerate(df.file_name.unique()):record = {}image_df = df[df.file_name == img_name]file_path = f'{IMAGES_PATH}/{img_name}'record["file_name"] = file_pathrecord["image_id"] = image_idrecord["height"] = int(image_df.iloc[0].height)record["width"] = int(image_df.iloc[0].width)objs = []for _, row in image_df.iterrows():xmin = int(row.x_min)ymin = int(row.y_min)xmax = int(row.x_max)ymax = int(row.y_max)poly = [(xmin, ymin), (xmax, ymin),(xmax, ymax), (xmin, ymax)]poly = list(itertools.chain.from_iterable(poly))obj = {"bbox": [xmin, ymin, xmax, ymax],"bbox_mode": BoxMode.XYXY_ABS,"segmentation": [poly],"category_id": classes.index(row.class_name),"iscrowd": 0}objs.append(obj)record["annotations"] = objsdataset_dicts.append(record)return dataset_dicts

使用的格式的函数:我们将每个注释行转换为一个具有注释列表的单个记录。您可能还会注意到,我们正在构建一个与边界框完全相同形状的多边形。这对于Detectron2中的图像分割模型是必需的。

您将不得不将数据集注册到数据集和元数据目录中:

for d in ["train", "val"]:DatasetCatalog.register("faces_" + d, lambda d=d: create_dataset_dicts(train_df if d == "train" else test_df, classes))MetadataCatalog.get("faces_" + d).set(thing_classes=classes)statement_metadata = MetadataCatalog.get("faces_train")

不幸的是,默认情况下不包含测试集的评估器。我们可以通过编写自己的训练器轻松修复它:

class CocoTrainer(DefaultTrainer):@classmethoddef build_evaluator(cls, cfg, dataset_name, output_folder=None):if output_folder is None:os.makedirs("coco_eval", exist_ok=True)output_folder = "coco_eval"return COCOEvaluator(dataset_name, cfg, False, output_folder)

如果未提供文件夹,则评估结果将存储在coco_eval文件夹中。

在Detectron2模型上微调与编写PyTorch代码完全不同。我们将加载配置文件,更改一些值,然后启动训练过程。但是嘿,如果您知道自己在做什么,这真的会有所帮助。在本教程中,我们将使用Mask R-CNN X101-FPN模型。它在COCO数据集上进行了预训练,并且表现非常好。缺点是训练速度较慢。

让我们加载配置文件和预训练的模型权重:

cfg = get_cfg()cfg.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_3x.yaml")
)cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("COCO-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_3x.yaml"
)

指定我们将用于训练和评估的数据集(我们注册了这些数据集):

cfg.DATASETS.TRAIN = ("faces_train",)
cfg.DATASETS.TEST = ("faces_val",)
cfg.DATALOADER.NUM_WORKERS = 4

至于优化器,我们将进行一些魔法以收敛到某个好的值:

cfg.SOLVER.IMS_PER_BATCH = 4
cfg.SOLVER.BASE_LR = 0.001
cfg.SOLVER.WARMUP_ITERS = 1000
cfg.SOLVER.MAX_ITER = 1500
cfg.SOLVER.STEPS = (1000, 1500)
cfg.SOLVER.GAMMA = 0.05

除了标准的内容(批量大小、最大迭代次数和学习率)外,我们还有几个有趣的参数:

  • WARMUP_ITERS - 学习率从0开始,并在此次数的迭代中逐渐增加到预设值

  • STEPS - 学习率将在其检查点(迭代次数)降低的次数

最后,我们将指定类别的数量以及我们将在测试集上进行评估的周期:

cfg.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE = 64
cfg.MODEL.ROI_HEADS.NUM_CLASSES = len(classes)cfg.TEST.EVAL_PERIOD = 500

是时候开始训练了,使用我们自定义的训练器:

os.makedirs(cfg.OUTPUT_DIR, exist_ok=True)trainer = CocoTrainer(cfg)
trainer.resume_or_load(resume=False)
trainer.train()

评估目标检测模型

与评估标准分类或回归模型相比,评估目标检测模型有点不同。您需要了解的主要指标是IoU(交并比)。它测量两个边界之间的重叠程度-预测的和真实的。它可以在0和1之间获得值。

a363c6b48bd9d29d9f2e4509c5cc8eb5.png

使用IoU,可以定义阈值(例如> 0.5)来分类预测是否为真阳性(TP)或假阳性(FP)。现在,您可以通过获取精度-召回曲线下的区域来计算平均精度(AP)现在,AP@X(例如AP50)只是某个IoU阈值下的AP。这应该让您对如何评估目标检测模型有一个工作的了解。

我已经准备了一个预训练模型,因此不必等待训练完成。下载它:

!gdown --id 18Ev2bpdKsBaDufhVKf0cT6RmM3FjW3nL 
!mv face_detector.pth output/model_final.pth

我们可以通过加载模型并设置最低的85%的置信度阈值来开始进行预测,以此来将预测视为正确:

cfg.MODEL.WEIGHTS = os.path.join(cfg.OUTPUT_DIR, "model_final.pth")
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.85
predictor = DefaultPredictor(cfg)

运行评估器与训练好的模型:

evaluator = COCOEvaluator("faces_val", cfg, False, output_dir="./output/")
val_loader = build_detection_test_loader(cfg, "faces_val")
inference_on_dataset(trainer.model, val_loader, evaluator)

在图像中查找人脸

接下来,让我们创建一个文件夹,并保存测试集中所有带有预测注释的图像:

os.makedirs("annotated_results", exist_ok=True)test_image_paths = test_df.file_name.unique()
for clothing_image in test_image_paths:file_path = f'{IMAGES_PATH}/{clothing_image}'im = cv2.imread(file_path)outputs = predictor(im)v = Visualizer(im[:, :, ::-1],metadata=statement_metadata,scale=1.,instance_mode=ColorMode.IMAGE)instances = outputs["instances"].to("cpu")instances.remove('pred_masks')v = v.draw_instance_predictions(instances)result = v.get_image()[:, :, ::-1]file_name = ntpath.basename(clothing_image)write_res = cv2.imwrite(f'annotated_results/{file_name}', result)

eaef04c00ad6f46682d79e21682c449c.png

·  END  ·

HAPPY LIFE

c941539f67c96091161bb2db5bd893b7.png

本文仅供学习交流使用,如有侵权请联系作者删除

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/72766.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

docker nginx ssl设置

使用docker运行nginx,配置代理,和ssl设置,进行https访问 一 准备 本次在centos环境中 1.已安装docker,docker-compose 2.运行了一个后端服务容器,提供基本的接口访问【可选】 3.一个域名(已经解析到服…

基于LSTM深度学习网络的时间序列分析matlab仿真

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 matlab2022a 3.部分核心程序 % 随机打乱数据集并划分训练集和测试集 index_list randperm(size(wdata, 1)); ind …

9.文件基本操作

第四章 文件管理 9.文件基本操作 ​    “打开文件和关闭文件”与平常鼠标双击打开文件和点击“X”关闭文件是有所不同的。 ​    操作系统在处理open系统调用时主要做了以下两件事情,①根据我们提供的文件存放路径在外存当中找到这个目录对应的目录表&#x…

基于QT4的GPX文件编辑器开发

GPX文件是记录地理点的文件,本质是一种xml文件。GPX文件目前没有很好的编辑器,因此作者决定开发一款无需安装的绿色编辑器。 在QT4开发中,XML可以用DOM来实现,但其逻辑并不是很清晰。使用模型视图反而会更加可读。因此在开发中,使用model-view模式来实现数据读写。 1 需…

Linux系统安装Google Chrome

1.进入谷歌浏览器官网 Google Chrome - Download the Fast, Secure Browser from GoogleGet more done with the new Google Chrome. A more simple, secure, and faster web browser than ever, with Google’s smarts built-in. Download now.http://www.google.cn/intl/en_…

【C++】做一个飞机空战小游戏(九)——发射子弹的编程技巧

[导读]本系列博文内容链接如下: 【C】做一个飞机空战小游戏(一)——使用getch()函数获得键盘码值 【C】做一个飞机空战小游戏(二)——利用getch()函数实现键盘控制单个字符移动【C】做一个飞机空战小游戏(三)——getch()函数控制任意造型飞机图标移动 【C】做一个飞…

易服客工作室:Houzez主题 - 超级房地产WordPress主题/网站

Houzez主题是全球流行的房地产经纪人和公司的WordPress主题。 Houzez Theme是专业设计师创造一流设计的超级灵活起点。它具有您的客户(房地产经纪人或公司)甚至可能做梦也想不到的功能。 网址:Houzez主题 - 超级房地产WordPress主题/网站 - …

Vue中实现自动匹配搜索框内容 关键字高亮文字显示

实现效果如下: 1.首先需要给输入框进行双向绑定 2.拿到搜索的结果去渲染页面 将返回的结果和搜索的关键字进行比对 如果相同的 就变红 上代码 html部分 //输入框<div class"search"><div class"shuru"><input type"请输入要查询的…

蓝牙资讯|安卓将加强耳机音量监控,耳机查找功能将更加普遍

为了保护用户的听力健康&#xff0c;Android 14 将增加一项新功能&#xff0c;当用户使用耳机听音乐时&#xff0c;如果音量过高或持续时间过长&#xff0c;系统会发出警告&#xff0c;并自动降低音量。这个功能叫做“耳机音量过高警告&#xff08;headphone loud sound alert&…

DevExpress VCL Subscription Crack

DevExpress VCL Subscription Crack Developer Express VCL Subscription包括VCL组件&#xff0c;用于&#xff1a;数据输入、图表、数据分析、导航、布局、网格、日程安排、样式、报告、打印和规划。Developer Express VCL Subscription支持Delphi XE7、XE8、10 Seattle、10.1…

Jmeter对websocket进行测试

JMeterWebSocketSampler-1.0.2-SNAPSHOT.jar下载 公司使用websocket比较奇怪&#xff0c;需要带认证信息进行长连接&#xff0c;通过websocket插件是请求失败&#xff0c;如下图&#xff0c;后面通过代码实现随再打包jar包完成websocket测试 本地实现代码如下&#xff1a; pa…

【设计模式】订单状态流传中的状态机与状态模式

文章目录 1. 前言2.状态模式2.1.订单状态流转案例2.1.1.状态枚举定义2.1.2.状态接口与实现2.1.3.状态机2.1.4.测试 2.2.退款状态的拓展2.2.1.代码拓展2.2.2.测试 2.3.小结 3.总结 1. 前言 状态模式一般是用在对象内部的状态流转场景中&#xff0c;用来实现状态机。 什么是状态…