【笔试题心得】排序算法总结整理

 排序算法汇总

常用十大排序算法_calm_G的博客-CSDN博客

在这里插入图片描述 

 以下动图参考 十大经典排序算法 Python 版实现(附动图演示) - 知乎

冒泡排序

排序过程如下图所示:

image.png

  1. 比较相邻的元素。如果第一个比第二个大,就交换他们两个。
  2. 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。这步做完后,最后的元素会是最大的数。
  3. 针对所有的元素重复以上的步骤,除了最后一个。
  4. 持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。
// arr: 需要排序的数组; length: 数组长度 
//注: int cnt = sizeof(a) / sizeof(a[0]);获取数组长度
void BubbleSort(int arr[], int length) 
{for (int i = 0; i < length; i++){for (int j = 0; j < length -  i - 1; j++){if (arr[j] > arr[j + 1])swap(arr[j],arr[j+1]);}}
}

选择排序

排序过程如下图所示:

动图

  1. 在未排序序列中找到最小(大)元素,存放到排序序列的起始位置
  2. 从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾
  3. 以此类推,直到所有元素均排序完毕
  4. 时间负复杂度:O(n^2),空间O(1),非稳定排序,原地排序
void selectSort(vector<int>& nums) {int len = nums.size();int minIndex = 0;for (int i = 0; i < len; ++i) {minIndex = i;for (int j = i + 1; j < len; ++j) {if (nums[j] < nums[minIndex]) minIndex = j;}swap(nums[i], nums[minIndex]);}
}

插入排序

排序过程如下图所示:

动图

  1. 从第一个元素开始,该元素可以认为已经被排序

  2. 取出下一个元素,在已经排序的元素序列中从后向前扫描

  3. 如果该元素(已排序)大于新元素,将该元素移到下一位置

  4. 重复步骤3,直到找到已排序的元素小于或者等于新元素的位置

  5. 将新元素插入到该位置后

  6. 重复步骤2~5

void insertionSort(vector<int>& a, int n) {//{ 9,1,5,6,2,3 }for (int i = 1; i < n; ++i) {if (a[i] < a[i - 1]) {   //若第i个元素大于i-1元素,直接插入。小于的话,移动有序表后插入int j = i - 1;int x = a[i];     //复制为哨兵,即存储待排序元素//a[i] = a[i - 1];           //先后移一个元素,可以不要这一句,跟循环里面的功能重复了while (j >= 0 && x < a[j]) {   //查找在有序表的插入位置,还必须要保证j是>=0的 因为a[j]要合法a[j + 1] = a[j];j--;     //元素后移}a[j + 1] = x;     //插入到正确位置}}
}

快速排序

 排序过程如下图所示:

动图

动图看起来有点复杂,下面放一个分解图https://blog.csdn.net/qq_38082146/article/details/115453732

我们以[ 8,2,5,0,7,4,6,1 ]这组数字为例来进行演示

首先,我们随机选择一个基准值(虽然图中选择了随机元素,但是一般上会以第一个元素为基准值):

快速排序1

与其他元素依次比较,大的放右边,小的放左边:

快速排序2

然后我们以同样的方式排左边的数据:

快速排序3

继续排 0 和 1 :

快速排序4

由于只剩下一个数,所以就不用排了,现在的数组序列是下图这个样子:

快速排序5

 右边以同样的操作进行,即可排序完成。

1、选取第一个数为基准

2、将比基准小的数交换到前面,比基准大的数交换到后面

3、对左右区间重复第二步,直到各区间只有一个数

void quickSort(vector<int>&numbers, int low, int high) {//  numbers = {10,8,4,6,9,10,123,6,2,14,3,8,5};if (low >= high) return;int first = low, last = high, key = numbers[low];cout << low << " " << high << " "<<key << endl;for (int i = 0; i < numbers.size(); ++i) {cout << numbers[i] << " ";}cout << endl;while (first < last) {//从后往前找比他小的放前面,从前往后找比他大的放在后面,//以第一个数为基准,必须先从后往前走,再从前往后走while (first < last && numbers[last] >= key)last--;if (first < last) numbers[first++] = numbers[last];while (first < last && numbers[first] <= key)first++;if (first < last) numbers[last--] = numbers[first];}numbers[first] = key;cout << "the index " << first << "  value " << key << endl;quickSort(numbers, low, first - 1);quickSort(numbers, first + 1, high);
}

 希尔排序

 排序过程如下图所示:

 

希尔排序是插入排序的一种变种。无论是插入排序还是冒泡排序,如果数组的最大值刚好是在第一位,要将它挪到正确的位置就需要 n - 1 次移动。

也就是说,原数组的一个元素如果距离它正确的位置很远的话,则需要与相邻元素交换很多次才能到达正确的位置,这样是相对比较花时间了。

希尔排序就是为了加快速度简单地改进了插入排序,交换不相邻的元素以对数组的局部进行排序。

希尔排序的思想是采用插入排序的方法,先让数组中任意间隔为 h 的元素有序,刚开始 h 的大小可以是 h = n / 2,接着让 h = n / 4,让 h 一直缩小,当 h = 1 时,也就是此时数组中任意间隔为1的元素有序,此时的数组就是有序的了。


void shellSortCore(vector<int>& nums, int gap, int i) {int inserted = nums[i];int j;//  插入的时候按组进行插入for (j = i - gap; j >= 0 && inserted < nums[j]; j -= gap) {nums[j + gap] = nums[j];}nums[j + gap] = inserted;
}void shellSort(vector<int>& nums) {int len = nums.size();//进行分组,最开始的时候,gap为数组长度一半for (int gap = len / 2; gap > 0; gap /= 2) {//对各个分组进行插入分组for (int i = gap; i < len; ++i) {//将nums[i]插入到所在分组正确的位置上shellSortCore(nums,gap,i);}}}

归并排序

 排序过程如下图所示:

1、把长度为n的输入序列分成两个长度为n/2的子序列;

2、对这两个子序列分别采用归并排序;

3、 将两个排序好的子序列合并成一个最终的排序序列。

 

void mergeSortCore(vector<int>& data, vector<int>& dataTemp, int low, int high) {if (low >= high) return;int len = high - low, mid = low + len / 2;int start1 = low, end1 = mid, start2 = mid + 1, end2 = high;mergeSortCore(data, dataTemp, start1, end1);mergeSortCore(data, dataTemp, start2, end2);int index = low;while (start1 <= end1 && start2 <= end2) {dataTemp[index++] = data[start1] < data[start2] ? data[start1++] : data[start2++];}while (start1 <= end1) {dataTemp[index++] = data[start1++];}while (start2 <= end2) {dataTemp[index++] = data[start2++];}for (index = low; index <= high; ++index) {data[index] = dataTemp[index];}
}void mergeSort(vector<int>& data) {int len = data.size();vector<int> dataTemp(len, 0);mergeSortCore(data, dataTemp, 0, len - 1);
}

堆排序

分为创建堆和堆排序两个部分

创建堆(这里假定是大根堆)时,要保证每个父节点的值比左右子节点的值大

当每次堆排序完成后,最顶端的即是当前堆的最大值,随后可以将堆的最大值与堆的倒数第一个元素互换,因为此时当前最大值已经完成排序,将其赶出堆内,堆的size减1,剩下的元素进行堆重构。

堆重构的过程就是维持堆每个父节点的值大于左右子节点值的过程

#include <iostream>
#include <algorithm>
#include <vector>using namespace std;//i位置的数,向上调整大根堆
void heapInsert(vector<int>& arr, int i)
{while (arr[i] > arr[(i - 1) / 2])    //子节点比父节点大{swap(arr[i], arr[(i - 1) / 2]);i = (i - 1) / 2;}}//i位置的数发生了变化,又想维持住大根堆的结构
void heapify(vector<int>& arr, int i, int size)
{int l = 2 * i + 1;  //左孩子while (l < size){int best = l + 1 < size && arr[l + 1] > arr[l] ?  l + 1 : l;best = arr[best] > arr[i] ? best : i;if (best == i)break;swap(arr[i], arr[best]);i = best;l = 2 * i + 1;}}//从顶到底建立大根堆
//依次弹出堆内的最大值,并重新排好序
void heapSort(vector<int>& arr)
{int size = arr.size();for (int i = 0; i < size; i++)    //建立大根堆{heapInsert(arr, i);}while (size > 1){swap(arr[0], arr[size - 1]);  size--;cout<< arr[size] <<endl;heapify(arr, 0, size);}
}int main()
{vector<int> arr = { 3,2,1,5,6,4 };heapSort(arr);
}

计数排序

计数排序用于元素大小范围有限的数值排序。

  • 如果 k(待排数组的最大值) 过大则会引起较大的空间复杂度,一般是用来排序 0 到 100 之间的数字的最好的算法,但是它不适合按字母顺序排序人名。

统计小于等于该元素值的元素的个数i,于是该元素就放在目标数组的索引i位(i≥0)

计数排序

 

  1. 找出待排序的数组中最大和最小的元素;
  2. 统计数组中每个值为 i 的元素出现的次数,存入数组 C 的第 i 项;
  3. 对所有的计数累加(从 C 中的第一个元素开始,每一项和前一项相加);
  4. 向填充目标数组:将每个元素 i 放在新数组的第 C[i] 项,每放一个元素就将 C[i] 减去 1
#include <iostream>
#include <vector>
#include <algorithm>using namespace std;// 计数排序
void CountSort(vector<int>& vecRaw, vector<int>& vecObj)
{// 确保待排序容器非空if (vecRaw.size() == 0)return;// 使用 vecRaw 的最大值 + 1 作为计数容器 countVec 的大小int vecCountLength = (*max_element(begin(vecRaw), end(vecRaw))) + 1;vector<int> vecCount(vecCountLength, 0);// 统计每个键值出现的次数for (int i = 0; i < vecRaw.size(); i++)vecCount[vecRaw[i]]++;// 后面的键值出现的位置为前面所有键值出现的次数之和for (int i = 1; i < vecCountLength; i++)vecCount[i] += vecCount[i - 1];// 将键值放到目标位置for (int i = vecRaw.size(); i > 0; i--)	// 此处逆序是为了保持相同键值的稳定性vecObj[--vecCount[vecRaw[i - 1]]] = vecRaw[i - 1];
}int main()
{vector<int> vecRaw = { 0,5,7,9,6,3,4,5,2,8,6,9,2,1 };vector<int> vecObj(vecRaw.size(), 0);CountSort(vecRaw, vecObj);for (int i = 0; i < vecObj.size(); ++i)cout << vecObj[i] << "  ";cout << endl;return 0;
}

桶排序

 排序过程如下图所示:

桶排序

  1. 设置一个定量的数组当作空桶子。
  2. 寻访序列,并且把项目一个一个放到对应的桶子去。
  3. 对每个不是空的桶子进行排序。
  4. 从不是空的桶子里把项目再放回原来的序列中。
#include<stdio.h>
int main() {int book[1001],i,j,t;//初始化桶数组for(i=0;i<=1000;i++) {book[i] = 0;}//输入一个数n,表示接下来有n个数scanf("%d",&n);for(i = 1;i<=n;i++) {//把每一个数读到变量中去scanf("%d",&t);//计数  book[t]++;}//从大到小输出for(i = 1000;i>=0;i--) {for(j=1;j<=book[i];j++) {printf("%d",i);}}getchar();getchar();//getchar()用来暂停程序,以便查看程序输出的内容//也可以用system("pause");来代替return 0;
}

基数排序

基数排序

  1. 取得数组中的最大数,并取得位数;
  2. arr为原始数组,从最低位开始取每个位组成radix数组;
  3. 对radix进行计数排序(利用计数排序适用于小范围数的特点)
int maxbit(int data[], int n) //辅助函数,求数据的最大位数
{int maxData = data[0];		///< 最大数/// 先求出最大数,再求其位数,这样有原先依次每个数判断其位数,稍微优化点。for (int i = 1; i < n; ++i){if (maxData < data[i])maxData = data[i];}int d = 1;int p = 10;while (maxData >= p){//p *= 10; // Maybe overflowmaxData /= 10;++d;}return d;
}
void radixsort(int data[], int n) //基数排序
{int d = maxbit(data, n);int *tmp = new int[n];int *count = new int[10]; //计数器int i, j, k;int radix = 1;for(i = 1; i <= d; i++) //进行d次排序{for(j = 0; j < 10; j++)count[j] = 0; //每次分配前清空计数器for(j = 0; j < n; j++){k = (data[j] / radix) % 10; //统计每个桶中的记录数count[k]++;}for(j = 1; j < 10; j++)count[j] = count[j - 1] + count[j]; //将tmp中的位置依次分配给每个桶for(j = n - 1; j >= 0; j--) //将所有桶中记录依次收集到tmp中{k = (data[j] / radix) % 10;tmp[count[k] - 1] = data[j];count[k]--;}for(j = 0; j < n; j++) //将临时数组的内容复制到data中data[j] = tmp[j];radix = radix * 10;}delete []tmp;delete []count;
}

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/73656.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

RNN模型简单理解和CNN区别

目录 神经网络&#xff1a;水平方向延伸&#xff0c;数据不具有关联性 ​ RNN&#xff1a;在神经网络的基础上加上了时间顺序&#xff0c;语义理解 ​RNN: 训练中采用梯度下降&#xff0c;反向传播 ​ 长短期记忆模型 ​输出关系&#xff1a;1 toN&#xff0c;N to N 单入…

Qt creator之对齐参考线——新增可视化缩进功能

Qt creator随着官方越来越重视&#xff0c;更新频率也在不断加快&#xff0c;今天无意中发现qt creator新版有了对齐参考线&#xff0c;也称可视化缩进Visualize Indent&#xff0c;默认为启用状态。 下图为旧版Qt Creator显示设置栏&#xff1a; 下图为新版本Qt Creator显示设…

linux 系统中vi 编辑器和库的制作和使用

目录 1 vim 1.1 vim简单介绍 1.2 vim的三种模式 1.3 vim基本操作 1.3.1命令模式下的操作 1.3.2 切换到文本输入模式 1.3.3 末行模式下的操作 2 gcc编译器 2.1 gcc的工作流程 2.2 gcc常用参数 3 静态库和共享&#xff08;动态&#xff09;库 3.1库的介绍 3.2静态…

7.原 型

7.1原型 【例如】 另外- this指向&#xff1a; 构造函数和原型对象中的this都指向实例化的对象 7.2 constructor属性 每个原型对象里面都有个constructor属性( constructor构造函数) 作用&#xff1a;该属性指向该原型对象的构造函数 使用场景: 如果有多个对象的方法&#…

根据源码,模拟实现 RabbitMQ - 实现消息持久化,统一硬盘操作(3)

目录 一、实现消息持久化 1.1、消息的存储设定 1.1.1、存储方式 1.1.2、存储格式约定 1.1.3、queue_data.txt 文件内容 1.1.4、queue_stat.txt 文件内容 1.2、实现 MessageFileManager 类 1.2.1、设计目录结构和文件格式 1.2.2、实现消息的写入 1.2.3、实现消息的删除…

vscode如何汉化

首先我们到vscode官网下载 链接如下&#xff1a; Visual Studio Code - Code Editing. Redefined 根据自己需要的版本下载就好 下载并且安装完毕之后 运行vscode 然后按快捷键 CTRLSHIFTX 打开安装扩展界面 搜索简体中文 安装就可以了 谢谢大家观看

SQL力扣练习(十一)

目录 1.树节点(608) 示例 1 解法一(case when) 解法二(not in) 2.判断三角形(610) 示例 1 解法一(case when) 解法二(if) 解法三(嵌套if) 3.只出现一次的最大数字(619) 示例 1 解法一(count limit) 解法二(max) 4.有趣的电影(620) 解法一 5.换座位(626) 示例 …

到江西赣州ibm维修服务器之旅-联想X3850 x6黄灯故障

2023年08月15日&#xff0c;一位江西赣州工厂客户通过朋友介绍与冠峰售前工程师取得联系&#xff0c;双方对产品故障前后原因沟通的大致情况如下&#xff1a; 服务器型号&#xff1a;Lenovo system x3850 x6 为用户公司erp仓库服务器 服务器故障&#xff1a;正常使用过程中业…

Rx.NET in Action 中文介绍 前言及序言

Rx 处理器目录 (Catalog of Rx operators) 目标可选方式Rx 处理器(Operator)创建 Observable Creating Observables直接创建 By explicit logicCreate Defer根据范围创建 By specificationRangeRepeatGenerateTimerInterval Return使用预设 Predefined primitivesThrow …

matlab使用教程(16)—图论中图的定义与修改

1.修改现有图的节点和边 此示例演示如何使用 addedge 、 rmedge 、 addnode 、 rmnode 、 findedge 、 findnode 及 subgraph 函数访问和修改 graph 或 digraph 对象中的节点和/或边。 1.1 添加节点 创建一个包含四个节点和四条边的图。s 和 t 中的对应元素用于指定每条…

物联网智慧安防实训综合实训基地建设方案

一、系统概述 物联网智慧安防实训综合实训基地是一个为学生提供综合实践、培养技能的场所&#xff0c;专注于物联网技术与智慧安防应用的培训和实训。通过物联网智慧安防实训综合实训基地的建设和运营&#xff0c;学生可以在真实的环境中进行实践训练&#xff0c;提高其物联网技…

【Linux命令详解 | gzip命令】 gzip命令用于压缩文件,可以显著减小文件大小

文章标题 简介一&#xff0c;参数列表二&#xff0c;使用介绍1. 基本压缩和解压2. 压缩目录3. 查看压缩文件内容4. 测试压缩文件的完整性5. 强制压缩6. 压缩级别7. 与其他命令结合使用8. 压缩多个文件9. 自动删除原文件 总结 简介 在Linux中&#xff0c;gzip命令是一款强大的文…