MySQL-16.MVCC(多版本并发控制)

news/2024/7/7 20:22:17/文章来源:https://www.cnblogs.com/changming06/p/18282734

C-16.多版本并发控制

1.什么是MVCC


MVCC(Multiversion Concurrency Control),多版本并发控制。顾名思义,MVCC是通过数据行的多个版本管理来实现数据库的并发控制。这项技术使得在InnoDB的事务隔离级别下执行一致性读操作有了保证。换言之,就是为了查询一些正在被另一事务更新的行,并且可以看到它们被更新之前的值,这样在做查询的时候就不同等待另一个事务释放锁。

MVCC没有正式的标准,在不同的DBMS中MVCC的实现方式可能是不同的,也不是普遍使用的。这里讲解InnoDB中MVCC的实现机制(MySQL其它的存储引擎并不支持它)。

2.快照读和当前读


MVCC在MySQL InnoDB中的实现主要是为了提高数据库并发性能,用更好的方式去处理读-写冲突,做到即使有读写冲突时,也能做到不加锁非阻塞并发读,而这个读指的就是快照读,而非当前读。当前读实际上是一种加锁的操作,是悲观锁的实现。而MVCC本质是采用乐观锁思想的一种方式。

2.1 快照读

快照读又叫一致性读,读取的是快照数据。不加锁的简单的SELECT都属于快照读,即不加锁的非阻塞读;

比如这样:

select * from t where ...

之所以出现快照读的情况,是基于提高并发性能的考虑,快照读的实现是基于MVCC,它在很多情况下,避免了加锁操作,降低了开销。

既然是基于多版本,那么快照读可能读到的并不一定是数据的最新版本,而有可能是之前的历史版本。

快照读的前提是隔离级别不是串行级别,串行级别下的快照读会退化成当前读。

2.2 当前读

当前读,读取的是记录的最新版本(最新数据,而不是历史版本的数据),读取时还要保证其他并发事务不能修改当前记录,会对读取的记录进行加锁。加锁的SELECT,或者对数据进行增删改都会进行当前读。

比如:

select * from t lock in share mode;#共享锁select * from t for update;#排他锁INSERT INTO t values...; #排他锁DELETE FROM t where ...; #排他锁update t set ...; #排他锁

3.复习


3.1 再谈隔离级别

事务的4个隔离级别,可能存在的三种并发问题:

注意,脏读问题因为太过严重,在任何隔离级别下,都被解决了。

在MySQL中,默认的隔离级别是可重复读,可以解决脏读和不可重复读的问题,如果仅从定义的角度来看,它并不能解决幻读问题。如果我们想要解决幻读问题,就需要采用串行化的方式,也就是将隔离级别提升到最高,但这样一来就会大幅降低数据库的事务并发能力。

MVCC可以不采用锁机制,而是通过乐观锁的方式来解决不可重复读和幻读问题!它可以在大多数情况下替代行级锁,降低系统的开销。

3.2 隐藏字段、Undo Log版本链

回顾一下undo日志的版本链,对于使用InnoDB存储引擎的表来说,它的聚簇索引记录中都包含两个必要的隐藏列。

  • trx_id:每次一个事务对某条聚簇索引记录进行改动时,都会把该事务的事务id赋值给trx_id隐藏列。
  • roll_pointer:每次对某条聚簇索引记录进行改动时,都会把旧的版本写入到undo日志中,然后这个隐藏列就相当于一个指针,可以通过它来找到该记录修改前的信息。

举例:student1表数据如下

mysql> select * from student1 where id = 1;
+----+---------+--------+
| id | name    | class  |
+----+---------+--------+
|  1 | 张三1   | 一班   |
+----+---------+--------+
1 row in set (0.01 sec)

假设插入该记录的事务id8,那么此刻该条记录的示意图如下所示:

insert undo只在事务回滚时起作用,当事务提交后,该类型的undo日志就没用了,它占用的Undo LogSegment也会被系统回收(也就是该undo日志占用的Undo页面链表要么被重用,要么被释放)。

假设之后两个事务id分别为1020的事务对这条记录进行UPDATE操作,操作流程如下:

执行顺序 事务10 事务20
1 begin;
2 begin;
3 update student set name = "李四" where id = 1;
4 update student set name = "王五" where id = 1;
5 commit;
6 update student set name = "钱七" where id = 1;
7 update student set name = "宋八" where id = 1;
8 commit;

能不能在两个事务中交叉更新同一条记录呢?不能!这不就是一个事务修改了另一个未提交事务修改过的数据,脏写。

InnoDB使用锁来保证不会有脏写情况的发生,也就是在第一个事务更新了某条记录后,就会给这条记录加锁,另一个事务再次更新时就需要等待第一个事务提交了,把锁释放之后才可以继续更新。

每次对记录进行改动,都会记录一条undo日志,每条undo日志也都有一个roll_pointer属性(INSERT操作对应的undo日志没有该属性,因为该记录并没有更早的版本),可以将这些undo日志都连起来,串成一个链表:

对该记录每次更新后,都会将旧值放到一条undo日志中,就算是该记录的一个旧版本,随着更新次数的增多,所有的版本都会被roll_pointer属性连接成一个链表,我们把这个链表称之为版本链,版本链的头节点就是当前记录最新的值。

每个版本中还包含生成该版本时对应的事务id。

4.MVCC实现原理之ReadView


MVCC的实现依赖于:隐藏字段,Undo Log,Read View。

4.1 什么是Read View

在MVCC机制中,多个事务对同一个行记录进行更新会产生多个历史快照,这些历史快照保存在Undo Log里。如果一个事务想要查询这个行记录,需要读取哪个版本的行记录呢?这时就需要用到 ReadView了,它帮我们解决了行的可见性问题。

ReadView就是一个事务在使用MVCC机制进行快照读操作时产生的读视图。当事务启动时,会生成数据库系统当前的一个快照,InnoDB为每个事务构造了一个数组,用来记录并维护系统当前活跃事务的ID(“活跃”指的就是,启动了但还没提交)。

4.2 设计思路

使用READ UNCOMMITTED隔离级别的事务,由于可以读到未提交事务修改过的记录,所以直接读取记录的最新版本就好了。

使用SERIALIZABLE隔离级别的事务,InnoDB规定使用加锁的方式来访问记录。

使用READ COMNITTEDREPEATABLE READ隔离级别的事务,都必须保证读到已经提交了的事务修改过的记录。假如另一个事务已经修改了记录但是尚未提交,是不能直接读取最新版本的记录的,核心问题就是需要判断一下版本链中的哪个版本是当前事务可见的,这是ReadView要解决的主要问题。

这个ReadView中主要包含4个比较重要的内容,分别如下:

1.creator_trx_id,创建这个Read View的事务ID。

说明:只有在对表中的数据做改动时(执行INSERT、UPDATE、DELETE这写语句时)才会为事务分配事务id,否则在一个只读事务中的事务id值默认为0。

2.trx_ids,表示在生成ReadView时当前系统中活跃的读写事务的事务id列表

3.up_limit_id,活跃的事务中最小的事务ID。

4.low_limit_id,表示生成ReadView时系统中应该分配给下一个事务的id值。low_limit_id是系统最大的事务id值 + 1,这里要注意是系统中的事务id,需要区别于正在活跃的事务ID。

注意: low_limit_id并不是trx_ids中的最大值,事务id是递增分配的。比如,现在有id为1,2,3这三个事务,之后id为3的事务提交了。那么一个新的读事务在生成ReadView时,trx_ids就包括1和2,up_limit_id的值就是1,low_limit_id的值就是4。

举例:

trx_ids为trd2、trx3、trx5和trx8的集合,系统的最大事务ID (low_limit_id)为 trx8 + 1(如果之前没有其他的新增事务),活跃的最小事务ID(up_limit_id)为trx2。

4.3 ReadView的规则

有了这个ReadView,这样在访问某条记录时,只需要按照下边的步骤判断记录的某个版本是否可见。被访问版本指的是,被查询数据的生成的版本(包括最新和历史)。被查询数据使用快照读的时候,在当前事务下,就会生成一版ReadView。不好理解,建议看视频。原视频地址

  • 如果被访问版本的trx_id属性值与ReadView(当前事务生成的)中的creator_trx_id值相同,意味着当前事务在访问它自己修改过的记录,所以该版本可以被当前事务访问。

  • 如果被访问版本的trx_id属性值小于ReadView(当前事务生成的)中的up_limit_id值,表明生成该版本的事务在当前事务生成ReadView前已经提交,所以该版本可以被当前事务访问。

  • 如果被访问版本的trx_id属性值大于或等于ReadView(当前事务生成的)中的low_limit_id值,表明生成该版本的事务在当前事务生成ReadView后才开启,所以该版本不可以被当前事务访问。

  • 如果被访问版本的trx_id属性值在ReadView(当前事务生成的)的 up_limit_idlow_limit_id之间,那就需要判断一下trx_id属性值是不是在trx_ids列表中。

    • 如果在,说明创建ReadView时生成该版本的事务还是活跃的,该版本不可以被访问。

    • 如果不在,说明创建ReadView时生成该版本的事务已经被提交,该版本可以被访问。

4.4 MVCC整体操作流程

了解了这些概念之后,我们来看下当查询一条记录的时候,系统如何通过MVCC找到它:

1.首先获助事务自己的版本号,也就是事务ID;

2.获取ReadView;

3.查询得到的数据,然后与ReadView中的事务版本号进行比较;

4.如果不符合ReadView规则,就需要从Undo Log中获取历史快照;

5.最后返回符合规则的数据。

如果某个版本的数据对当前事务不可见的话,那就顺着版本链找到下一个版本的数据,继续按照上边的步骤判断可见性,依此类推,直到版本链中的最后一个版本。如果最后一个版本也不可见的话,那么就意味着该条记录对该事务完全不可见,查询结果就不包含该记录。

InnoDB中,MVCC是通过Undo Log + Read View进行数据读取,Undo Log保存了历史快照,而Read View规则帮我们判断当前版本的数据是否可见。

在隔离级别为读未提及(Read Committed)时,一个事务中的每一次SELECT查询都会重新获取一次Read View。

如表所示:

事务 说明
begin;
select * from student where id > 2; 获取一次Read View
....
select * from student where id > 2; 获取一次Read View
commit;

注意,此时同样的查询语句都会重新获取一次 Read View,这时如果 Read View 不同,就可能产生不可重复读或者幻读的情况。

当隔离级别为可重复读的时候,就避免了不可重复读,这是因为一个事务只在第一次 SELECT 的时候会获取一次 Read View,而后面所有的 SELECT 都会复用这个 Read View,如下表所示:

5.举例说明


假设现在student1表中只有一条由事务id8的事务插入的一条记录:

mysql> select * from student1 where id = 1;
+----+---------+--------+
| id | name    | class  |
+----+---------+--------+
|  1 | 张三1   | 一班   |
+----+---------+--------+
1 row in set (0.01 sec)

MVCC只能在READ COMMITTED和REPEATABLE READ两个隔离级别下工作。接下来看一下READ COMMITTEDREPEATABLE READ所谓的生成ReadView的时机不同到底不同在哪里。

5.1 READ COMMITTED隔离级别下

READ COMMITTED:每次读取数据前都生成一个ReadView。

现在有两个事务id分别为10、20的事务在执行:

#Transaction 10
BEGIN;
update student1 set name = '李四' where id = 1;
update student1 set name = '王五' where id = 1;#Transaction 20
BEGIN;
#修改了别的表记录

说明:事务执行过程中,只有在第一次真正修改记录时(比如使用INSERT、DELETE、UPDATE语句),才会被分配一个单独的事务id,这个事务id是递增的。所以我们才在事务20中更新一些别的表的记录,目的是让它分配事务id。

此时,表student中id1的记录得到的版本链表如下所示:

假设现在有一个使用READ COMMITTED隔离级别的事务开始执行:

# 使用READ COMMITTED隔离级别的事务
BEGIN;# SELECT1:Transaction 10、20未提交
SELECT * FROM student WHERE id = 1; # 得到的列name的值为'张三'

这个SELECT1的执行过程如下:

步骤1:在执行SELECT语句时会先生成一个ReadView,ReadView的trx_ids列表的内容就是[10,20]up_limit_id10low_limit_id21 , creator_trx_id0

步骤2:从版本链中挑选可见的记录,从图中看出,最新版本的列name的内容是'王五',该版本的trx_id值为10,在trx_ids列表内,所以不符合可见性要求,根据roll_pointer跳到下一个版本。

步骤3∶下一个版本的列name的内容是'李四',该版本的trx_id值也为10,也在trx_ids列表内,所以也不符合要求,继续跳到下一个版本。
步骤4:下一个版本的列name的内容是'张三',该版本的trx_id值为8,小于ReadView中的up_limit_id10,所以这个版本是符合要求的,最后返回给用户的版本就是这条列name'张三'的记录。

之后,我们把事务id为10的事务提交一下:

# Transaction 10
BEGIN;UPDATE student SET name="李四" WHERE id=1;
UPDATE student SET name="王五" WHERE id=1;COMMIT;

然后再到事务id为20的事务中更新一下表studentid1的记录:

# Transaction 20
BEGIN;
# 更新了一些别的表的记录
...
UPDATE student SET name="钱七" WHERE id=1;
UPDATE student SET name="宋八" WHERE id=1;

此刻,表student中 id 为 1 的记录的版本链就长这样:

然后再到刚才使用READ COMMITTED隔离级别的事务中继续查找这个id为1的记录,如下:

# 使用READ COMMITTED隔离级别的事务
BEGIN;# SELECT1:Transaction 10、20均未提交
SELECT * FROM student WHERE id = 1; # 得到的列name的值为'张三'# SELECT2:Transaction 10提交,Transaction 20未提交
SELECT * FROM student WHERE id = 1; # 得到的列name的值为'王五'

这个SELECT2的执行过程如下:

步骤1:在执行SELECT语句时会又会单独生成一个ReadView,该ReadView的trx_ids列表的内容就是[20],up_limit_id20low_limit_id21, creator_trx_id0

步骤2:从版本链中挑选可见的记录,从图中看出,最新版本的列name的内容是'宋八',该版本的trx_id值为20,在trx_ids列表内,所以不符合可见性要求,根据roll_pointer跳到下一个版本。

步骤3:下一个版本的列name的内容是'钱七',该版本的trx_id值为20,也在trx_ids列表内所以也不符合要求,继续跳到下一个版本。

步骤4∶下一个版本的列name的内容是'王五',该版本的trx_id值为10,小于ReadView中的up_limit_id20,所以这个版本是符合要求的,最后返回给用户的版本就是这条列name为'王五'的记录。

以此类推,如果之后事务id20的记录也提交了,再次在使用READ COMMITTED隔离级别的事务中查询表studentid值为1的记录时,得到的结果就是'宋八'了,具体流程我们就不分析了。

强调:使用READ COMMITTED隔离级别的事务在每次查询开始时都会生成一个独立的ReadView,

5.2 REPEATABLE READ隔离级别的事务

和READ COMMITED类似,只是在REPEATABLE READ隔离级别下,只有第一次访问相同的数据时,会生成一次Read View,所以在执行SELECT2语句时,查出的数据还是'张三'

5.3 如何解决幻读

接下来说明InnoDB 是如何解决幻读的。

假设现在表 student 中只有一条数据,数据内容中,主键 id=1,隐藏的 trx_id=10,它的 undo log 如下图所示。


假设现在有事务 A 和事务 B 并发执行,事务 A的事务 id 为20事务 B的事务 id 为30

步骤1:事务 A 开始第一次查询数据,查询的 SQL 语句如下。

select * from student where id >= 1;

在开始查询之前,MySQL 会为事务 A 产生一个 ReadView,此时 ReadView 的内容如下: trx_ids= [20,30]up_limit_id=20low_limit_id=31creator_trx_id=20

由于此时表 student 中只有一条数据,且符合 where id>=1 条件,因此会查询出来。然后根据 ReadView机制,发现该行数据的trx_id=10,小于事务 A 的 ReadView 里 up_limit_id,这表示这条数据是事务 A 开启之前,其他事务就已经提交了的数据,因此事务 A 可以读取到。

结论:事务 A 的第一次查询,能读取到一条数据,id=1。

步骤2:接着事务 B(trx_id=30),往表 student 中新插入两条数据,并提交事务。

insert into student(id,name) values(2,'李四');
insert into student(id,name) values(3,'王五');


步骤3:接着事务 A 开启第二次查询,根据可重复读隔离级别的规则,此时事务 A 并不会再重新生成ReadView。此时表 student 中的 3 条数据都满足 where id>=1 的条件,因此会先查出来。然后根据ReadView 机制,判断每条数据是不是都可以被事务 A 看

1)首先 id=1 的这条数据,前面已经说过了,可以被事务 A 看到。

2)然后是 id=2 的数据,它的 trx_id=30,此时事务 A 发现,这个值处于 up_limit_id 和 low_limit_id 之间,因此还需要再判断 30 是否处于 trx_ids 数组内。由于事务 A 的 trx_ids=[20,30],因此在数组内,这表示 id=2 的这条数据是与事务 A 在同一时刻启动的其他事务提交的,所以这条数据不能让事务 A 看到。

3)同理,id=3 的这条数据,trx_id 也为 30,因此也不能被事务 A 看见。


结论:最终事务 A 的第二次查询,只能查询出 id=1 的这条数据。这和事务 A 的第一次查询的结果是一样的,因此没有出现幻读现象,所以说在 MySQL 的可重复读隔离级别下,不存在幻读问题。

6.总结


这里介绍了MVCCREAD COMMITTDREPEATABLE READ这两种隔离级别的事务在执行快照读操乍时访问记录的版本链的过程。这样使不同事务的读-写写-读操作并发执行,从而提升系统性能。

核心点在于ReadView的原理,READ COMNITTDREPEATABLE READ这两个隔离级别的一个很大不同就是生成ReadView的时机不同:

  • READ COMMITTD在每一次进行普通SELECT操作前都会生成一个ReadView。
  • REPEATABLE READR只在第一次进行普通SELECT操作前生成一个ReadView,之后的查询操作都重复使用这个ReadView就好了。

说明:我们之前说执行DELETE语句或者更新主键的UPDATE语句并不会立即把对应的记录完全从页面中删除,而是执行一个所谓的delete mark操作,相当于只是对记录打上了一个删除标志位,这主要就是为MVCC服务的。

通过MVCC 我们可以解决:

  • 读写之间阻塞的问题。通过MVCC可以让读写互相不阻塞,即读不阻塞写,写不阻塞读,这样就可以提升事务并发处理能力。
  • 降低了死锁的概率。这是因为MVCC采用了乐观锁的方式,读取数据时并不需要加锁,对于写操作,也只锁定必要的行。
  • 解决快照读的问题。当我们查询数据库在某个时间点的快照时,只能看到这个时间点之前事务提交更新的结果,而不能看到这个时间点之后事务提交的更新结果。

只是为了记录自己的学习历程,且本人水平有限,不对之处,请指正。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/737098.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

[JLU] 数据结构与算法上机题解思路分享-课程设计第一次与第二次上机

这是吉林等通知大学数据结构与算法上机题的题解思路,没有精妙的解法,只是一个记录罢前言 首先,请务必自己尽全力尝试实现题目,直接看成品代码,思维就被拘束了,也很容易被查重。 这里只是思路解析的博客,代码仓库在 JLU_Data_Structures_Record 希望你能在这里找到你想要…

【Python】GUI开发笔记

一、环境搭建: 1、Pycharm开发工具pycharm历史版本 https://www.jetbrains.com/pycharm/download/other.html破解插件 https://blog.csdn.net/weixin_50737119/article/details/135628513 2、PYENV 版本管理 Python也有对应的版本管理工具,叫pyenv 这个东西挺奇怪的,直接发…

Day1| 704. 二分查找 27. 移除元素

704.二分查找 题目链接 : https://leetcode.cn/problems/binary-search/description/ 思路😗*切记二分查找要基于排序好的数组或者数据,否则二分查找必不能使用!!!!!!!!! ** 双指针写最简单,一个头指针从0开始,一个尾指针从数组长度-1开始,中间指针是头+尾/2,每次比较头尾中间…

不同操作系统下的换行符

1. 关键字 2. 换行符的比较 3. ASCII码 4. 修改换行符4.1. VSCode5. 参考文档1. 关键字 CR LF CRLF 换行符 2. 换行符的比较英文全称 英文缩写 中文含义 转义字符 ASCII码值 操作系统Carriage Return CR 回车 \r 13 MacIntosh(早期的Mac)Linefeed LF 换行/新行 \n 10 Unix/Li…

1s内控制向某个请求请求的次数

背景 有的时候后端提供的接口对相同的IP进行限制,在某个时间内不能发送超过X条的请求,一旦超过指定的请求数会导致后续请求接口会出现异常。 效果需求 比如:在1s内最多同时发送2个请求,多出来的请求在后续的1s或者后续的Ns中发起 代码 <template><div class="…

电脑hold escape key to prevent startlsback怎么处理?

电脑出现hold escape key to prevent StartlsBack from,一般遇到这种问题之后,一直按住ESC键就没有了。但是还需彻底的解决掉这个问题。 首先我们按下“ctrl +alt +del”组合键打开任务管理器,左上角“运行新任务”,输入“control”并确定,就可以打开控制面板,查看方式为…

7.3日RTOS自学心得

我现在用的单片机主要是裸机系统,轮询系统和前后台系统(中断处理),但是为了以后的职业发展肯定还是要学习下操作系统的,也就是多任务系统FreeRTOS,在看野火的资料【[野火]uCOS-III 内核实现与应用开发实战指南】,学习到了第六章,任务的定义与任务切换的实现。 总结如下…

fisher线性判别分析和多分类问题探究

本文继续来讨论另一种分类模型————fisher线性判别分析 目录一、模型思想二、SPSS的实现1.参数设置(1)定义范围(2) 统计(3)保存与分类2.结果分析(1)典则判别函数系数(2)分类结果(3)分类函数系数(4)保存预测结果四、多分类问题 一、模型思想 我们以二分类问题举例…

[Paper Reading] GAIA-1: A Generative World Model for Autonomous Driving

GAIA-1: A Generative World Model for Autonomous Driving GAIA-1 时间:23.09 机构:Wayve TL;DR 本文介绍一种生成世界模型,该模型利用视频、文本和动作输入来生成逼真的驾驶场景,同时提供对自身车辆行为和场景特征的细粒度控制。 Method模型输入 训练过程输入video/text(…

进度报告1

(1)1.在黑马程序员中找到java的教学网课,初步学习了Java语言的概述以及完成了java的开发环境搭建,成功安装了jdk并且利用命令行窗口顺利验证java和javac是否正常安装并且能使用。2.编写入门代码helloworld代码:public class HelloWorld{ public static void main(String[]…

模拟集成电路设计系列博客——8.4.2 时间-数字转换器

8.4.2 时间-数字转换器 在上一节我们介绍了TDC的一种典型实现,即单延时链TDC,通过\(2^N\)的延迟单元和D触发器可以实现N bit的时间数字转换功能,但这种结构的分辨率受到延迟单元的最小延迟时间限制,即: \[LSB=\tau_{delay}=\frac{T}{2^N} \tag{8.4.10} \]其中\(T\)为TDC的…

聊一聊领域驱动与贫血模型

写在前面 前段时间跟领导讨论技术债概念时不可避免地提到了代码的质量,而影响代码质量的因素向来都不是单一的,诸如项目因素、管理因素、技术选型、人员素质等等,因为是技术债务,自然就从技术角度来分析,单纯从技术角度来看代码质量,其实又细分很多原因,如代码设计、代码…

《智能计算系统》第五章 编程框架原理(上)课程笔记

《智能计算系统》第五章 编程框架原理(上)课程视频链接:https://www.bilibili.com/video/BV1Ei421i7Rg 本文源自于B站国科大计算所 智能计算系统课程官方账号 所公开上传的视频,在原有视频之上,提取了关键帧、将音频转成了文字并进行了校正,以便学习使用。在此,也感谢国…

点云分割网络---Point Transformer V2

PDF: 《Point Transformer V2: Grouped Vector Attention and Partition-based Pooling》 CODE: https://github.com/Gofinge/PointTransformerV2 一、大体内容 前面一篇文章介绍了Point Transformer,这一篇在其基础上进行改进,提出了强大且高效的Point Transformer V2模型,…

【坚果识别】果实识别+图像识别系统+Python+计算机课设+人工智能课设+卷积算法

一、介绍 坚果识别系统,使用Python语言进行开发,通过TensorFlow搭建卷积神经网络算法模型,对10种坚果果实(杏仁, 巴西坚果, 腰果, 椰子, 榛子, 夏威夷果, 山核桃, 松子, 开心果, 核桃)等图片数据集进行训练,得到一个识别精度较高的模型文件,让后使用Django搭建Web网页端…

MRCTF 2022 EzJava

MRCTF 2022 EzJava 题目分析 下载附件得到一个 jar 包和一个 waf 配置文件。如果只是为了本地搭建环境,直接启动 jar 包就行了,但是如果需要进行远程调试就需要进行一些配置(这个网上教程很多),这个调试也要看具体需求,能直接打通的话就不需要调试。 但是不管怎么说,第一…

逻辑回归求解二分类问题以及SPSS的实现

分类问题就是给出物质的属性,判断其属于什么成分,本文将讲述逻辑回归求解二分类问题 本文着重于模型的实现,对于推导只是概括性的叙述 目录一、问题提出二、逻辑回归函数logistic1.线性线性概率模型2.sigmod函数3.求解方法————极大似然估计4.分类原则三、SPSS实现———…

线上的一次fullgc排查过程

线上服务的GC问题,是Java程序非常典型的一类问题,非常考验工程师排查问题的能力。同时,几乎是面试必考题,但是能真正答好此题的人并不多,要么原理没吃透,要么缺乏实战经验。过去半年时间里,我们的广告系统出现了多次和GC相关的线上问题,有Full GC过于频繁的,有Young G…

基于GWO灰狼优化的LDPC码NMS译码算法最优归一化参数计算和误码率matlab仿真

1.算法仿真效果 matlab2022a仿真结果如下(完整代码运行后无水印):2.算法涉及理论知识概要LDPC码是一种线性错误修正码,以其接近香农极限的优良性能而被广泛应用于现代通信系统中。NMS译码是一种基于最小平方误差准则的软判决译码方法,其目标是找到一个最可能的码字,使得接…

k8s-核心组件

核心组件组成 Kubernetes 主要由以下几个核心组件组成: - etcd :保存整个集群的状态 - API Server:提供了资源操作的唯一入口,并提供认证、授权、访问控制、API注册和发现等机制 - Controller Manager:负责维护集群的状态,如故障检测、自动扩展、滚动更新等 - Scheduler:…