椭流线法设计配光器

news/2024/7/7 17:55:23/文章来源:https://www.cnblogs.com/zbyisgudi/p/18284331

椭流线法设计配光器

椭流线法设计配光器

一、设计原理

1、边光原理

边光原理是非成像光学中的一个基础原理,其内容可以表述为:来自光源边缘的光线经过若干有序正则光学曲面后依然落在投射光斑的边缘,而来自光源内部的光线也将落在光斑内部。这里的边缘包含两层含义:①二维曲面边缘;②光束立体角边缘。对于需要考察光斑内部分布的照明配光器件而言,利用边光原理可以生成一个基础方案,也为设计带来方便。

其核心思想就是 “边缘对边缘” ,可以作如下具体的表述:
若一个具有一定光展的光源发出的光线经过一个或几个序列化的单调正则光学表面的光学作用后投向目标面形成光斑,则整个光学过程具有以下两个性质:一是光源的边光成为光斑的边光;二是光源的内光映射为光斑的内光,并保持光线的拓扑结构不变。

如图3.37所示,唯有\(C_i\)不是边光,而是内部光线,简称内光。


8fd3ee9430fe1afadc4bbd8936842548.png

2、反射定律

在均匀介质中,由费马原理可以导出反射定律。反射定律包含两点:①入射光线、法线和反射光线共面;②入射角和反射角相等。主要应用于镜面或界面等光学器件设计。

一条光线从\(P_1\)点出发,在镜面\(M\)\(A\)点反射,转而折向\(P_2\)点。\(P_1\)\(P_2\)的距离与\(Q\)\(P_1\)的距离相等,这里\(Q\)\(P\)的镜像。如果光沿着路径\(P_1BP_2\)传播,其距离等于路径 \(QBP_2\)的距离,或者沿着路径\(P_1CP_2\)传播,其距离等于路径 \(QCP_2\)的距离,那么它传播更远的距离。这个原理解释了为什么入射光线与表面法线的夹角\(\alpha\)等于反射光线与法线的夹角。图3.25(a)为原理图。

以数学的形式,图3.25(b)中\(P_1\)\(P_2\)两点间的距离\(S\)

\[S = \sqrt{a ^ 2 + x ^ 2} + \sqrt{b ^ 2 +(d - x) ^ 2} \]

从而

\[\frac{dS}{dx} = \frac{1}{2}\frac{2x}{\sqrt{a ^ 2 + x ^ 2}} - \frac{1}{2}\frac{2(d - x)}{b ^ 2 + (d - x) ^ 2} = sin{\alpha_1} - sin{\alpha_2} \]

我们要寻找点\(A\)位置\(\alpha\)使得\(P_1\)\(P_2\)的距离是最小的。使得\(S\)取得最小值的\(x\)的值可以通过\(\frac{dS}{dx}\)获得,从而

\[sin{\alpha_1} = sin{\alpha_2} \Leftrightarrow \alpha_1 = \alpha_2 \]

这便是反射定律。


d60eeeebcf028fc79b0506c69a80e026.png

3、椭流线几何特性

配焦椭流线法是将椭圆几何特性与光学原理结合起来形成的一种针对点光源设计的配光方法。如下图所示,\(F\)\(G\)是椭圆的两个焦点,\(F\)\(G\)点的坐标分别为\(F(0, 0)\)\(G(0, 0)\)

\(P\)是椭圆上任意一点\(P = (P_1, P_2) = t(cos{\phi}, sin{\phi})\), \(t\)\(F\)\(G\)的距离,则点\(P\)\(G\)的距离可求:

\[s = \sqrt{(G - P) \cdot (G - P)} = \sqrt{f ^ 2 + t ^ 2 - 2 f t cos{\phi}} \]

根据椭圆原理可知长轴\(K = t + s\), \(K\)为常量,因此

\[s ^ 2 = (K - t) ^ 2 \Leftrightarrow f ^ 2 + t ^ 2 - 2 f t cos{\phi} = (K - t) ^ 2 \]

由上式可以推出关于\(t\)的参数方程:

\[t(\phi) = \frac{K ^ 2 - f ^ 2}{2K - 2f cos{\phi}} \]

因此可以推出椭圆的参数化方程:

\[\frac{K ^ 2 - f ^ 2}{2K - 2f cos{\phi}} (cos{\phi}, sin{\phi}) \]


屏幕截图 2024-06-05 102622.png

对于椭圆焦点不在坐标轴上的离轴焦点情况,如下图所示:


2a9c3c563578404f57ba3f883cd103df.png

有参数化方程:

\[\frac{K ^ 2 - f ^ 2}{2K - 2f cos{\phi}} (cos{(\phi + \alpha)}, sin{(\phi + \alpha)}) + F \]

二、设计目标

  1. 距配光器底部距离\(d = 15mm\)的LED发出的光线通过配光器反射后能投射至\(H = 3300mm\)的目标面,形成一个半径为\(r_N = 1000mm\)均匀圆斑。

三、设计方法

椭流线法配光系统大致如下图所示。将光源角空间进行分割记为\(\theta_i\),同时将目标面分割记为\(r_i\);通过能量分配建立\(\theta_i\)\(r_i\)之间的映射关系,求出\(\theta_i\)\(r_i\);最后通过反射定律求出由\(P_i\)构成的光学母线。由于对称,故在设计过程中可以只考虑二维平面下的半边。


c94bac98541f93411e3758cb9b0d74e5.png

1、光源角分割

本次设计中选用的LED光源为朗伯型光源,故该光源有如下光强分布:

\[I = I_0 cos{\theta} \]

已知光通量光强关系式:

\[I_V = \frac{d \phi_V}{d \Omega} \]

\[\varphi = \int I_V d \Omega \]

故可推得:

\[\varphi = \int_{\theta_i}^{\theta_j} I sin{\theta} d \theta \]

\[\varphi = I_0 \int_{\theta_i}^{\theta_j} cos{\theta} sin{\theta} d \theta \]

将光源角按照能量等分形式进行分割。已知总能量\(\varphi_a\),等分为\(N\)份,则有单份能量\(\varphi_i = \frac{\varphi_a}{N}\),可以推得:

\[\varphi_i = I_0 \int_{\theta_i}^{\theta_{i + 1}} cos{\theta} sin{\theta} d \theta \]

\[\varphi_i = \frac{1}{2} I_0 [sin{\theta_{i + 1}} ^ 2 - sin{\theta_i} ^ 2] \]

代入\(\varphi_i = \frac{\varphi_a}{N}\),可得

\[\theta_{i + 1} = arcsin{\sqrt{\frac{2 \varphi_a}{N I_0} + sin{\theta_i} ^ 2}} \]

2、目标面分割

因为对光源角进行了等能分割,故对目标面进行等面积分割。
目标光斑面积为:

\[S_a = \pi r_N ^ 2 \]

将目标光斑面积等分为\(N\)份,则中心圆面积为:

\[S_1 = \pi r_1 ^ 2 \]

其余圆环面积为:

\[S_i = \pi (r_i ^ 2 - r_{i - 1} ^ 2) \]

使得任意\(i \in [1, N]\)均有:

\[S_i = \frac{S_a}{N} \]

可以得到:

\[S_1 = \pi r_1 ^ 2 = \frac{\pi r_N ^ 2}{N} \]

化简得:

\[r_1 = \sqrt{\frac{r_N ^ 2}{N}} \]

对于\(i \in [2, N]\)则有:

\[r_i = \sqrt{\frac{r_N ^ 2}{N} + r(i - 1) ^ 2} \]

3、建立映射关系

等能分割后的光源角与等面积分割的目标面一一对应,映射的光源分割角\(\theta_i\)与目标分割圆环半径\(r_i\)计算公式如下:

\[\begin{cases}r_1 = \sqrt{\frac{r_N ^ 2}{N}} \\r_i = \sqrt{\frac{r_N ^ 2}{N} + r(i - 1) ^ 2}, & i \in [2, N] \end{cases} \]

\[\begin{cases}\theta_1 = arcsin{\sqrt{\frac{1}{N}}} \\\theta_i = arcsin{\sqrt{\frac{1}{N} + sin{\theta_{i - 1}} ^ 2}}, & i \in [2, N] \end{cases} \]

4、构建反射曲面


f7d6f4d460cb3d693917ada35d00b8d4.png

将反射面按角度分割,接收面按面积分割后,开始构建反射曲面。将反射曲面分割为\(N\)份,与剪裁法通过直线段构建反射曲面不同,椭流线法采用椭圆线段来构建反射曲面,即将剪裁法中的直线段替换为椭圆线段。

利用椭圆的配焦性质,一个焦点发出的光线,经过椭圆构成的曲面汇聚,汇聚到另一焦点。由此可以控制每一分割段光线的汇聚点。

对于发射角范围在\(\theta \in [\theta_0, \theta_1]\)的光线,经过反射面反射,将落在该段椭圆上的另一焦点\(Q_2\)上,即对应圆环的夹心圆上\(\frac{r_1 + r_2}{2}\)

由此可以计算得到椭圆线段上点的坐标:

\[\left[ \begin{matrix}x \\y \end{matrix} \right] = \frac{K ^ 2 - f ^ 2}{2K - 2f cos{\phi}} \left[ \begin{matrix}cos{(\phi + \alpha)} \\sin{(\phi + \alpha)} \end{matrix} \right] + \left[ \begin{matrix}F_x \\F_y \end{matrix} \right] \]

式中,\(\phi = \theta_1 - \theta_0\).

四、设计步骤

1、设计参数

\[\begin{matrix}d = 15mm \\H = 3300mm \\LED 1616 \\r_N = 1000mm \\ \end{matrix} \]

2、编写matlab程序,计算光学母线

main.m

%% 初始化
clc
clear%% 参数设定
H = 3300;   % 目标面距离
RN = 1000;  % 目标光斑半径
N = 1000;  % 曲面细分
d = 15;     % 光源与反射面底部距离%% 计算抛物流线坐标
y = elli_RF(H, RN, N, d);
plot(y(:, 1), y(:, 2));
y = [y, zeros(length(y), 1)];
grid on;
axis equal;
save('椭流线反射面数据.txt', 'y', '-ascii');

elli_RF.m

function site = elli_RF(H, RN, N, d)% H:目标面距离% RN:目标光斑半径% N:曲面细分% d:光源与反射面底部距离n = 5;  % 每段内离散点数量theta1 = 0;   % 初始角度site = zeros(2, N * n);      % 为反射面坐标分配内存r1 = 0;  % 目标面分配分割圆环首个外圆半径p1 = [0; d];   % 椭流线起点F1 = [0; 0];   % 初始焦点for i = 1 : Ntheta2 = asin(sqrt(1 / N + (sin(theta1)) ^ 2));   % 计算每一反射点对应角度r2 = sqrt(RN ^ 2 / N + r1 ^ 2);F2 = [(r2 + r1) / 2; -H];    % 取圆环的夹心圆上的点作为反射面上对应的另一焦点alpha = -atan(H / ((r2 + r1) / 2));  % 计算椭圆偏转角% 计算当前段椭流线角度范围the1 = pi / 2 - alpha - theta1;     % 左边界the2 = pi / 2 - alpha - theta2;     % 右边界% 对角度范围进行线性插值并去除右边界the = linspace(the1, the2, n + 1);the(end)=[];f = norm(F2);   % 计算焦距k = norm(F1 - p1) + norm(F2 - p1);  % 计算长轴% 计算该段椭流线坐标点site(:, n * (i - 1) + 1 : i * n) = (k ^ 2 - f ^ 2) ./ ...(2 * k - 2 * f .* cos(the)) .*...[cos(alpha + the);sin(alpha + the)];% 更新下一段椭流线起点、映射圆环内圆及起始角度p1 = site(:, i * n);r1 = r2;theta1 = theta2;endsite = site';
end

计算得到光学母线:


光学母线.png

3、将计算好的光学母线数据导入SolidWorks,建立配光器模型


SD.png

4、在SolidWorks中保存零件为.sat(R20)格式,并导入TracePro中


椭流线法配光器2.png


椭流线法配光器1.png

对LED的发光面设置10000000条光线并进行光线追迹,得到接收面的辐照度分析图,包括中心点和其他任意点的分析。


一千万光线幅度分析图.png


一千万光线幅度分析图2.png


一千万光线幅度分析图3.png


一千万光线幅度分析图4.png


一千万光线幅度分析图5.png

从辐照度分析图可以看出,该配光器的接收效率为\(99.45 \%\)左右,均匀度大致在\(95 \%\)附近,目标面光斑有着些微斑点。均匀度和光效均满足目标需求。

五、误查分析

在计算曲面的坐标点时,仅仅保证椭流线在从自由曲面顶点到边缘方向保证了自由曲面各点的切向方向,但并不能保证曲面各点的法向方向,因此,才会导致设计的自由曲面的仿真结果与理想光斑的均匀度存在一定的差异。

六、总结

整体而言,本次设计成功实现了预定目标,通过椭流线法设计出的配光器在接收效率和均匀度上均表现良好,满足了设计需求,展示了椭流线法在配光设计领域的实际应用。通过对边光原理、反射定律和椭流线几何特性的深入分析,对建立椭流线法反射曲面有了一定的理论基础。建立模型后,通过matlab计算光学母线,solidworks建立配光器模型以及tracepro进行光学仿真,展示了设计从理论到实践的转化过程。此外,设计结果展示的偏差也为后续的优化提供一定的参考。

参考

  1. 张航, 严金华. 非成像光学设计[M]. 北京: 科学出版社, 2016.
  2. 刘超. 基于配焦椭流线法的自由曲面设计[D]. 浙江:浙江工业大学,2015.
  3. 共焦椭流线

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/738164.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

wx云开发增删改查

首先是.wxml文件,此处为固定数据的新增<button type="primary" bind:tap="addData"> //调用.js中addData方法插入数据 </button>对应.js文件//添加数据addData(){wx.showLoading({ //showLoading(api接口)(防止用户多次…

剪裁法设计配光器

剪裁法设计配光器通过光源角分割和目标面分割,利用边光原理和反射定律,计算并构建光学母线,以实现高均匀度和高光效的均匀圆斑光学设计。剪裁法设计配光器 剪裁法设计配光器 一、设计原理边光原理 边光原理是非成像光学中的一个基础原理,其内容可以表述为:来自光源边缘的光…

iOS-列表视图

在iOS开发中,UITableView和UICollectionView是两个非常核心的用于展示集合数据的UI组件。它们都能以列表的形式展示数据,但各自的特点和使用场景有所不同。 UITableView UITableView用于展示和管理垂直滚动的单列数据列表。它是以行的形式展示数据,每行(cell)可以展示相同…

CPC配光系统设计

本文详细介绍了CPC(复合抛物线聚光器)配光系统的设计过程,包括设计原理、抛物流线几何特性及其设计要求和流程,并通过Matlab和SolidWorks绘制模型,最后在TracePro中进行仿真验证,确保系统满足均匀照度和高效接收率的目标。CPC配光系统设计 CPC配光系统设计 一、设计原理 …

VMware vSphere Tanzu部署_14_部署容器应用

1.部署运行容器应用 1.1. 登录tkc集群 jianhua@napp:~/tkc$ kubectl vsphere login --server=192.168.203.194 \ --tanzu-kubernetes-cluster-name tkc-dev-cluster \ --tanzu-kubernetes-cluster-namespace tkc-01 \ --vsphere-username administrator@vsphere.local \ --ins…

贝塞尔曲线原理、推导及Matlab实现

本文详细解析了贝塞尔曲线的定义、性质、构建方法以及多种阶数的推导公式,并提供了完整的Matlab代码用于绘制和计算贝塞尔曲线。贝塞尔曲线原理、推导及Matlab实现 贝塞尔曲线原理、推导及Matlab实现 一、简介 贝塞尔曲线提出 在数学的数值分析领域中,贝塞尔曲线(English:B…

刘积仁的大健康“长跑”

软件是一个长命的产业,但软件企业的寿命都很短。懂得怕死,才能有机会活得长久。 这一次,刘积仁又为东软医疗找到了强大助力!中国通用技术(集团)控股有限责任公司(以下简称通用技术集团)所属资本公司战略投资东软集团在医疗健康领域资的创新业务公司——东软医疗,双方也由…

【AppStore】一文让你学会IOS应用上架Appstore

咱们国内现在手机分为两类,Android手机与苹果手机,现在用的各类APP,为了手机的使用安全,避免下载到病毒软件,官方都极力推荐使用手机自带的应用商城进行下载,但是国内Android手机品类众多,手机商城各式各样,做不到统一,所以Android的APP上架得一个一个平台去申请上架,…

关于airtest生成的报告中缺少poco语句问题

1、airtest生成的报告只显示airtest的相关操作,如果是poco和airtest-selenium的操作则不记录。因此需要在报告中引用插件。支持poco语句插件,poco.utils.airtest.report 支持airtest-selenium语句插件,airtest_selenium.report2、在IDE运行 .py 脚本报告生成的依据是脚本运行…

xshell7的下载ssh远程连接

1.下载地址家庭/学校免费 - NetSarang Website (xshell.com) 2.下载后一路next,来到主页面,我们来连接一下试一试吧,这里主机就是ifconfig得到的 3.用户名一般都是root密码是自己设置的那个 4.连接的时候注意比如我要连接Node1那么node1就要保持开启并却防火墙已经关闭 5.看一…

xhcms1.0

xhcms1.0 目录结构 admin --管理后台文件夹 css --存放css的文件夹 files --存放页面的文件夹 images --存放图片的文件夹 inc --存放网站配置文件的文件夹 install --网站进行安装的文件夹 seacmseditor --编辑器文件夹 te…

关于巴图自动化Profinet协议转Modbus协议网关模块怎么配置IP地址教学

Profinet协议和Modbus协议是工业通讯常用协议,通过巴图自动化PN转Modbus网关模块(BT-MDPN10)实现连接。常见的协议有:ModbusTCP协议,Profibus协议,Profibus DP协议,EtherCAT协议,EtherNET协议,CAN,CANOPEN等Profinet协议和Modbus协议是工业领域中常用的两种通讯协议,…

基础篇:Stable Diffusion 基础原理详述

【基础篇】Stable Diffusion 基础原理详述前言我认为学习 ComfyUI 应该先从理论学起。与传统绘图工具(如 Photoshop 或 Figma)相比,AI 绘图工具有着显著不同。首先,许多设置和操作在 AI 绘图工具中是非可视化的,这意味着即使你更改了某个配置,界面上也未必会有任何变化,…

微信云开发数据库连接

//.js文件const db = wx.cloud.database()Page({//页面的初始数据data: {dataObj:"" //定义对象dataObj}, //查询数据getData(){db.collection("pro1").where({ //pro1为数据库名author:"张三" …

Camstar里拿到Grid的行数据

两种方法: 1.GridDataMode属性为Geceric的:拿到的数据直接放在datatable里,并且赋值给grid,这里我把拿来的数据放在了一个集合里,测试用的 随便写写 2.GridDataMode属性为ItemList的:这里是用了一个集合去接收datatable的值,再把集合赋值给grid这里和第一种的区别是我没有…

MQTT专题

什么是Mqtt MQTT协议 全称是(Message Queuing Telemetry Transport),即消息队列遥测传输协议。 是一种基于发布/订阅(Publish/Subscribe)模式的轻量级通讯协议,并且该协议构建于TCP/IP协议之上,我们知道TCP协议本身就具有高可靠性的特点,因此基于其上的MQTT协议同样也…

安装visual studio失败,组策略阻止安装webview2

排查安装和升级问题 - Visual Studio | Microsoft Learn 需要修改注册表 ,将 InstallDefault值改为1注册表路径 HKEY_LOCAL_MACHINE\SOFTWARE\Policies\Microsoft\EdgeUpdate

appium 使用

refer to: python+appium2~inspector工具使用及定位操作元素~_哔哩哔哩_bilibili 1 APPium Inspector 可以查看Android应用的 包名 和activity 打开APP,且处于启动页面 Q1 noReset=True 设置每次APP启动 不重头 初始化环境 怎么实现呢 Q1 那我们现在用的是appium1 还是 appi…

7月11日云技术研讨会 | 车载信息安全全流程实施方案

7月11日,经纬恒润《车载信息安全全流程实施方案》云技术研讨会,与您相聚云端,不见不散! 伴随着汽车的智能网联化发展,网络攻击也逐渐渗透漫延至汽车领域,汽车行业面临着重大的信息安全挑战。此外,UNECE WP.29 R155和ISO/SAE 21434等标准也对汽车的信息安全提出了规…