opencv直方图与模板匹配

import cv2 #opencv读取的格式是BGR
import numpy as np
import matplotlib.pyplot as plt#Matplotlib是RGB
%matplotlib inline 
def cv_show(img,name):cv2.imshow(name,img)cv2.waitKey()cv2.destroyAllWindows()

直方图

cv2.calcHist(images,channels,mask,histSize,ranges)

  • images: 原图像图像格式为 uint8 或 float32。当传入函数时应 用中括号 [] 括来例如[img]
  • channels: 同样用中括号括来它会告函数我们统幅图 像的直方图。如果入图像是灰度图它的值就是 [0]如果是彩色图像 的传入的参数可以是 [0][1][2] 它们分别对应着 BGR。
  • mask: 掩模图像。统整幅图像的直方图就把它为 None。但是如 果你想统图像某一分的直方图的你就制作一个掩模图像并 使用它。
  • histSize:BIN 的数目。也应用中括号括来
  • ranges: 像素值范围常为 [0256]
img = cv2.imread('cat.jpg',0) #0表示灰度图
hist = cv2.calcHist([img],[0],None,[256],[0,256])
hist.shape
plt.hist(img.ravel(),256); 
plt.show()

img = cv2.imread('cat.jpg') 
color = ('b','g','r')
for i,col in enumerate(color): histr = cv2.calcHist([img],[i],None,[256],[0,256]) plt.plot(histr,color = col) plt.xlim([0,256]) 

 

 mask操作

# 创建mast
mask = np.zeros(img.shape[:2], np.uint8)
print (mask.shape)
mask[100:300, 100:400] = 255
cv_show(mask,'mask')
img = cv2.imread('cat.jpg', 0)
cv_show(img,'img')
masked_img = cv2.bitwise_and(img, img, mask=mask)#与操作
cv_show(masked_img,'masked_img')
hist_full = cv2.calcHist([img], [0], None, [256], [0, 256])
hist_mask = cv2.calcHist([img], [0], mask, [256], [0, 256])
plt.subplot(221), plt.imshow(img, 'gray')
plt.subplot(222), plt.imshow(mask, 'gray')
plt.subplot(223), plt.imshow(masked_img, 'gray')
plt.subplot(224), plt.plot(hist_full), plt.plot(hist_mask)
plt.xlim([0, 256])
plt.show()

直方图均衡化 

 

 

img = cv2.imread('clahe.jpg',0) #0表示灰度图 #clahe
plt.hist(img.ravel(),256); 
plt.show()

 

equ = cv2.equalizeHist(img) 
plt.hist(equ.ravel(),256)
plt.show()

 

res = np.hstack((img,equ))
cv_show(res,'res')

自适应直方图均衡化

clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8)) 
res_clahe = clahe.apply(img)
res = np.hstack((img,equ,res_clahe))
cv_show(res,'res')

模板匹配

模板匹配和卷积原理很像,模板在原图像上从原点开始滑动,计算模板与(图像被模板覆盖的地方)的差别程度,这个差别程度的计算方法在opencv里有6种,然后将每次计算的结果放入一个矩阵里,作为结果输出。假如原图形是AxB大小,而模板是axb大小,则输出结果的矩阵是(A-a+1)x(B-b+1)

# 模板匹配
img = cv2.imread('lena.jpg', 0)
template = cv2.imread('face.jpg', 0)
h, w = template.shape[:2] 
img.shape
template.shape
  • TM_SQDIFF:计算平方不同,计算出来的值越小,越相关
  • TM_CCORR:计算相关性,计算出来的值越大,越相关
  • TM_CCOEFF:计算相关系数,计算出来的值越大,越相关
  • TM_SQDIFF_NORMED:计算归一化平方不同,计算出来的值越接近0,越相关
  • TM_CCORR_NORMED:计算归一化相关性,计算出来的值越接近1,越相关
  • TM_CCOEFF_NORMED:计算归一化相关系数,计算出来的值越接近1,越相关
    methods = ['cv2.TM_CCOEFF', 'cv2.TM_CCOEFF_NORMED', 'cv2.TM_CCORR','cv2.TM_CCORR_NORMED', 'cv2.TM_SQDIFF', 'cv2.TM_SQDIFF_NORMED']
    res = cv2.matchTemplate(img, template, cv2.TM_SQDIFF)
    res.shape
    min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
    min_val
    max_val
    min_loc
    max_loc
    for meth in methods:img2 = img.copy()# 匹配方法的真值method = eval(meth)print (method)res = cv2.matchTemplate(img, template, method)min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)# 如果是平方差匹配TM_SQDIFF或归一化平方差匹配TM_SQDIFF_NORMED,取最小值if method in [cv2.TM_SQDIFF, cv2.TM_SQDIFF_NORMED]:top_left = min_locelse:top_left = max_locbottom_right = (top_left[0] + w, top_left[1] + h)# 画矩形cv2.rectangle(img2, top_left, bottom_right, 255, 2)plt.subplot(121), plt.imshow(res, cmap='gray')plt.xticks([]), plt.yticks([])  # 隐藏坐标轴plt.subplot(122), plt.imshow(img2, cmap='gray')plt.xticks([]), plt.yticks([])plt.suptitle(meth)plt.show()

     

     

    匹配多个对象

    img_rgb = cv2.imread('mario.jpg')
    img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2GRAY)
    template = cv2.imread('mario_coin.jpg', 0)
    h, w = template.shape[:2]res = cv2.matchTemplate(img_gray, template, cv2.TM_CCOEFF_NORMED)
    threshold = 0.8
    # 取匹配程度大于%80的坐标
    loc = np.where(res >= threshold)
    for pt in zip(*loc[::-1]):  # *号表示可选参数bottom_right = (pt[0] + w, pt[1] + h)cv2.rectangle(img_rgb, pt, bottom_right, (0, 0, 255), 2)cv2.imshow('img_rgb', img_rgb)
    cv2.waitKey(0)

     

     

     

     

     

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/73897.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Web菜鸟入门教程 - Swagger实现自动生成文档

如果是一个人把啥都开发了,那用不到Swagger-UI,但一般情况是前后端分离的,所以就需要告诉前端开发人员都有哪些接口,传入什么参数,怎么调用,返回什么。有了Swagger-UI就能把这部分文档编写的业务给省去了。…

高效反编译luac文件

对于游戏开发人员,有时候希望从一些游戏apk中反编译出源代码,进行学习,但是如果你触碰到法律边缘,那么你要非常小心。 这篇文章,我针对一些用lua写客户端或者服务器的编译过的luac文件进行反编译,获取其源代码的过程。 这里我不赘述如何反编译解压apk包的过程了,只说重点…

Spring解决循环依赖问题

一、什么是循环依赖? 例如,就是A对象依赖了B对象,B对象依赖了A对象。(下面的代码属于属性的循环依赖,也就是初始化阶段的循环依赖,区别与底下构造器的循环依赖) // A依赖了Bclass A{public B b;…

深入理解 go协程 调度机制

Thread VS Groutine 这里主要介绍一下Go的并发协程相比于传统的线程 的不同点: 创建时默认的stack大小 JDK5 以后Java thread stack默认大小为1MC 的thread stack 默认大小为8MGrountine 的 Stack初始化大小为2K 所以Grountine 大批量创建的时候速度会更快 和 …

Photoshop制作漂亮光泽感3D按钮

原文链接(https://img-blog.csdnimg.cn/45472c07f29944458570b59fe1f9a0e0.png)

【数据结构与算法】十大经典排序算法-归并排序

🌟个人博客:www.hellocode.top 🏰Java知识导航:Java-Navigate 🔥CSDN:HelloCode. 🌞知乎:HelloCode 🌴掘金:HelloCode ⚡如有问题,欢迎指正&#…

在vue中使用swiper轮播图(搭配watch和$nextTick())

在组件中使用轮播图展示图片信息: 1.下载swiper,5版本为稳定版本 cnpm install swiper5 2.在组件中引入swiper包和对应样式,若多组件使用swiper,可以把swiper引入到main.js入口文件中: import swiper/css/swiper.css //引入swipe…

Redis基础概念和数据类型详解

目录 1.什么是Redis? 2.为什么要使用Redis? 3.Redis为什么这么快? 4.Redis的使用场景有哪些? 5.Redis的基本数据类型 5.1 5种基础数据类型 5.1.1 String字符串 5.1.2 List列表 5.1.3 Set集合 5.1.4 Hash散列 5.1.5 Zset有序集…

如何修复损坏的DOC和DOCX格式Word文件?

我们日常办公中,经常用到Word文档。但是有时会遇到word文件损坏、无法打开的情况。这时该怎么办?接着往下看,小编在这里就给大家带来最简单的Word文件修复方法! 很多时候DOC和DOCX Word文件会无缘无故的损坏无法打开,一…

UNIAPP中开发企业微信小程序

概述 需求为使用uni-app开发企业微信小程序。希望可以借助现成的uni-app框架,快速开发。遇到的问题是uni-app引入jweixin-1.2.0.js提示异常: Reason: TypeError: Cannot read properties of undefined (reading ‘title’)。本文中描述了如何解决该问题&#xff0c…

Mybatis的学习笔记(IDEA快捷键,参数占位符,转义符)

一、IDEA快捷键: IDEA多行注释:ctrlShift/ 单行注释:ctrl/ 导入包,自动修正代码:altenter 自动生成代码:altinsert 二、Mybatis重要知识点: 2.1 参数占位符 一共分为2种:#{}和…

【gitkraken】gitkraken自动更新问题

GitKraken 会自动升级&#xff01;一旦自动升级&#xff0c;你的 GitKraken 自然就不再是最后一个免费版 6.5.1 了。 在安装 GitKraken 之后&#xff0c;在你的安装目录&#xff08;C:\Users\<用户名>\AppData\Local\gitkraken&#xff09;下会有一个名为 Update.exe 的…