【三维重建】【深度学习】【数据集】基于COLMAP制作自己的NeuS(DTU格式)数据集

【三维重建】【深度学习】【数据集】基于COLMAP制作自己的NeuS(DTU格式)数据集

提示:最近开始在【三维重建】方面进行研究,记录相关知识点,分享学习中遇到的问题已经解决的方法。


文章目录

  • 【三维重建】【深度学习】【数据集】基于COLMAP制作自己的NeuS(DTU格式)数据集
  • 前言
  • 下载安装colmap软件
  • 下载LLFF源码
  • 采集图片,使用colmap获取相机位姿
    • 采集图像
    • 位姿计算
  • 转成LLFF数据的格式
  • 转成DTU数据的格式
  • 总结


前言

DTU格式是NeuS网络模型训练使用的数据集格式之一,本文基于COLMAP软件展示从DTU格式数据集的制作到开始模型训练的完整流程。NeuS通过输入同一场景不同视角下的二维图片和相机位姿,对场景进行三维隐式建模,使用一种新的一阶近似无偏差的公式,从而即使没有掩模监督,也能进行更精确的表面重建。


下载安装colmap软件

下载COLMAP软件【下载地址】,本文使用的是Windows下的CUDA版本:

解压后双击打开COLMAP.bat,出现如下界面:

软件安装成功。


下载LLFF源码

# 可能需要科学上网从Github上直接git下载,博主下载到neus下
git clone https://github.com/Fyusion/LLFF.git
# 激活虚拟环境
conda activate XXX
# eg: activate neus
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple scikit-image
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple imageio

采集图片,使用colmap获取相机位姿

采集图像

本文制作数据集所需要的图片是用手机拍摄视频后抽帧获取的

# 激活虚拟环境
conda activate XXX
# eg: activate neus
# 安装opencv
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple opencv-python

新建文件Video_to_frame.py,通过执行以下代码完成抽帧(自定义抽帧的间隔)。

import os
import cv2
def extract_images(video_path, output_folder):# 获取视频文件名video_name = os.path.splitext(os.path.basename(video_path))[0]# 新建文件夹output_path = os.path.join(output_folder, video_name)if not os.path.exists(output_path):os.makedirs(output_path)# 打开视频cap = cv2.VideoCapture(video_path)# 设置帧间隔frame_interval = int(2)# 逐帧提取并保存满足间隔要求的帧count = 0while cap.isOpened():ret, frame = cap.read()if ret:print(frame_interval)if count % frame_interval == 0:image_name = os.path.join(output_path, f"{video_name}_{count//frame_interval}.jpg")cv2.imwrite(image_name, frame)count += 1else:breakcap.release()if __name__ == '__main__':video_path = 'C:/Users/XXX/Desktop/test_video/test.mp4'  # 视频文件路径output_folder = 'C:/Users/XXX/Desktop/test_frame'  # 输出文件夹路径extract_images(video_path, output_folder)

在这里插入图片描述

位姿计算

创建⼯程: 点击File -> New project 以新建一个项目。
1.点击New,选择一个文件夹(博主与测试图片放置在同一目录),设置工程名以新建工程数据文件。

2.点击Select,选择刚才图像所在的⽂件夹,点击Save。

新建工程项目并配置完毕。

特征提取与匹配
1.图片特征提取,点击Processing -> Feature extraction,Camera model选择SIMPLE_PINHOLE,其他配置使用默认配置即可,点击Extract后,自动开始提取图片特征。

待特征提取完毕后关闭窗口。

2.图片特征匹配,点击Processing -> Feature matching,使用默认配置直接点击Run进行特征匹配。

待特征匹配完毕后关闭窗口。

在右侧Log一栏中可以查看特征提取与匹配的进度,请确保过程中没有Erro报错

稀疏重建
点击Reconstruction -> Start reconstruction进行重建,在窗口中可以看到重建过程,此过程可能会持续一段时间。

重建完毕后,得到如下图,通过右下角Images和Points可以大致判断是否重建成功。

注意:匹配的位姿和图片数目不同在后续的步骤中会导致报错,博主会在下文中详细说明解决这个问题的方法,暂时继续跟着步骤走。

保存位姿和稀疏点
点击File -> Export model 以导出模型,在保存图像的文件夹所在的目录下新建/sparse/0/文件夹,选择该文件夹将模型导入到该目录下。

在/sparse/0/目录下得到如下文件,成功保存图像位姿。


转成LLFF数据的格式

进入LLFF目录下,打开imgs2poses.py文件,新增如下内容,default=‘里面是sparse所在目录的绝对路径’,并将参数’scenedir’修改为是’- -scenedir’。

存放照片的文件夹名称必须是images,否则会出错,博主这里是test,所以需要修改成images。
在运行imgs2poses.py代码

# 注意要在imgs2poses.py所在目录执行命令
python imgs2poses.py
# 或者附带imgs2poses.py的路径
python XXXX\imgs2poses.py
# eg: python LLFF\imgs2poses.py

假如不增加default=‘’。

# 在运行imgs2poses.py代码时,即使有默认值也必须传入路径(与scenedir参数有关)
python imgs2poses.py "XXXX/XXXX/"

出现如下的问题:

这个问题是博主之前所说的匹配的位姿和图片数目不同导致的,博主在这里解决这个问题。通过在 LLFF/llff/poses/pose_utils.py 文件的32行左右添加如下代码:

    #---------输出匹配到位姿的图片名---------for i in np.argsort(names):print(names[i],end=' ')#---------输出匹配到位姿的图片名---------

添加代码位置如下图所示:

显示出所有匹配到位姿的图片。

进入图像保存的目录,删除没有匹配到位姿的图像,而后重新进行 “位姿计算” 这一步骤。

解决问题后,执行结果如下图所示:

生成有关图像位姿的npy文件,格式转换步骤完毕。


转成DTU数据的格式

博主提供了LLFF数据格式转DTU数据格式的代码。
将代码解压到合适的文件夹下,这里博主是解压到NeuS路径下。

执行指令将LLFF数据格式转DTU数据格式。

# XXX表示sparse所在的路径,不包含sparse。
python tools/preprocess_llff.py XXXX
#eg: python tools/preprocess_llff.py C:\Users\AYU\Desktop\test_frame


所有准备工作都已完成。


总结

尽可能简单、详细的介绍DTU格式数据集的制作流程以及解决了制作过程中可能存在的问题。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/76138.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

人工智能与云计算实训室建设方案

一、 人工智能与云计算系统概述 人工智能(Artificial Intelligence,简称AI)是一种模拟人类智能的科学和工程,通过使用计算机系统来模拟、扩展和增强人类的智能能力。人工智能涉及多个领域,包括机器学习、深度学习、自然…

搭载KaihongOS的工业平板、机器人、无人机等产品通过3.2版本兼容性测评,持续繁荣OpenHarmony生态

近日,搭载深圳开鸿数字产业发展有限公司(简称“深开鸿”)KaihongOS软件发行版的工业平板、机器人、无人机等商用产品均通过OpenAtom OpenHarmony(以下简称“OpenHarmony”)3.2 Release版本兼容性测评,获颁O…

STM32 F103C8T6学习笔记10:OLED显示屏GIF动图取模—简易时钟—动图手表的制作~

今日尝试做一款有动图的OLED实时时钟,本文需要现学一个OLED的GIF动图取模 其余需要的知识点有不会的可以去我 STM32 F103C8T6学习笔记 系列专栏自己查阅把,闲话不多,直接开肝~~~ 文章提供源码,测试工程下载,测试效…

JVM——配置常用参数,GC调优策略

文章目录 JVM 配置常用参数Java内存区域常见配置参数概览堆参数回收器参数项目中常用配置常用组合 常用 GC 调优策略GC 调优原则GC 调优目的GC 调优策略 JVM 配置常用参数 Java内存区域常见配置参数概览堆参数;回收器参数;项目中常用配置;常…

【云原生、k8s】Calico网络策略

第四阶段 时 间:2023年8月17日 参加人:全班人员 内 容: Calico网络策略 目录 一、前提配置 二、Calico网络策略基础 1、创建服务 2、启用网络隔离 3、测试网络隔离 4、允许通过网络策略进行访问 三、Calico网络策略进阶 1、创…

政务、商务数据资源有效共享:让数据上“链”,记录每一个存储过程!

数据上链是目前“区块链”最常见的场景。因为链上所有参与方都分享了统一的事实来源,所有人都可以即时获得最新的信息,数据可用不可见。因此,不同参与方之间的协作效率得以大幅提高。同时,因为区块链上的数据难以篡改,…

【数据挖掘】使用 Python 分析公共数据【01/10】

一、说明 本文讨论了如何使用 Python 使用 Pandas 库分析官方 COVID-19 病例数据。您将看到如何从实际数据集中收集见解,发现乍一看可能不那么明显的信息。特别是,本文中提供的示例说明了如何获取有关疾病在不同国家/地区传播速度的信息。 二、准备您的…

开学有哪些好用电容笔值得买?ipad触控笔推荐平价

因为有了Apple Pencil,使得iPad就成了一款便携的生产力配件,其优势在于,电容笔搭配上iPad可以让专业的绘画师在iPad上作画,而且还能画出各种粗细不一的线条,对于有书写需求的学生党来讲,还是很有帮助的。但本人不敢想像…

如何编写一个通用的函数?

🎈个人主页:🎈 :✨✨✨初阶牛✨✨✨ 🐻推荐专栏1: 🍔🍟🌯C语言初阶 🐻推荐专栏2: 🍔🍟🌯C语言进阶 🔑个人信条: 🌵知行合一 金句分享:…

Xxl-job安装部署以及SpringBoot集成Xxl-job使用

1、安装Xxl-job: 可以使用docker拉取镜像部署和源码编译两种方式,这里选择源码编译安装。 代码拉取地址: https://github.com/xuxueli/xxl-job/tree/2.1.2 官方开发文档: https://www.xuxueli.com/xxl-job/#%E3%80%8A%E5%88%…

5G科技防汛,助力守护一方平安

“立秋虽已至,炎夏尚还在”,受台风席卷以及季节性影响全国多地正面临强降水的严峻挑战。“落雨又顺秋,绵绵雨不休”,正值“七下八上” 防汛关键时期,贵州省水文水资源局已全面进入备战状态。 为确保及时响应做好防汛抢…

C++的常用基础知识100个

1、定义一个常量 2、数据类型-整型 3、数据类型-字符型 4、数据的输入 5、运算符 6、三目运算符 7、循环案例-99乘法表 8、数组 9、冒泡排序 10、函数的定义 11、函数的分文件编写 12、指针 12、结构体 13、通讯录项目 创建一个空项目,并命名为通讯录管理系统。 14…