【C++习题集】-- 堆

(用于复习)

目录

树概念及结构

名词概念

二叉树概念及结构

特殊的二叉树

满二叉树

完全二叉树

运算性质

二叉树存储结构

顺序存储

链式存储

堆 - 顺序存储

堆的性质

堆的实现

堆的应用

堆排序

直接建堆法


树概念及结构

        概念非线性的数据结构(形成的倒挂似树的结构 - 根朝上,叶朝下,子树之间不能有交集)。

名词概念

  • 节点的度一个节点含有的子树的个数称为该节点的度。
  • 叶节点或终端节点:度为0的节点称为叶节点。
  • 非终端节点或分支节点:度不为0的节点。
  • 双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点。
  • 孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点。
  • 兄弟节点:具有相同父节点的节点互称为兄弟节点。
  • 树的度一棵树中,最大的节点的度称为树的度。
  • 节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推。
  • 树的高度或深度树中节点的最大层次。
  • 堂兄弟节点:双亲在同一层的节点互为堂兄弟。
  • 节点的祖先:从根到该节点所经分支上的所有节点。
  • 子孙:以某节点为根的子树中任一节点都称为该节点的子孙。
  • 森林:由m(m>0)棵互不相交的树的集合称为森林。

二叉树概念及结构

        由一个根节点加上两棵别称为左子树和右子树的二叉树组成 - 子树可为空。

  • 不存在度大于2的结点。

特殊的二叉树

满二叉树

        每一个层的结点数都达到最大值,则结点总数:2^k - 1(K层数)

完全二叉树

        特殊的完全二叉树 - 最后一层不满,但是是左到右是连续的

        (满二叉树是特殊的完全二叉树)

运算性质

  • 根节点的层数为1,则第i层上最多有2^(i - 1)个结点
  • 根节点的层数为1,则深度h的最大结点数是2^h - 1
  • 根节点的层数为1,n个结点的满二叉树的深度h = log2(n + 1)
  • 如果度为0其叶结点个数为n,度为2的分支结点个数为m,则有:n = m + 1
  • n个结点的完全二叉树,以数组顺序对所有节点开始编号:
  1. 若i>0,i位置节点的双亲序号:(i - 1) / 2
  2. 若2i + 1 < n,左孩子序号:2i + 1,2i + 1 >= n否则无左孩子
  3. 若2i + 2 < n,右孩子序号:2i + 2,2i + 2 >= n否则无右孩子

一个具有767个节点的完全二叉树,其叶子节点个数为()

A、383
B、384
C、385
D、386
------------------------------------------
正确答案:B
------------------------------------------
解析:
        不要只想最后一层,倒数第二层也是会有叶子节点的。
首先以:

        可以推算出是第1 ~ 9层为满二叉树,对应节点数:511。可以知道最后一层一定为叶子节点:256个。

        然后根据完全二叉树是最后一层不满,但是是左到右是连续的,于是256 / 2 = 128,所以倒数第二层有128个是最后一层的父节点。

 再根据:

        可知倒数第二层有256个节点,于是叶子节点:256 + 256 - 128 = 384。

二叉树存储结构

顺序存储

        用数组来存储,适合表示完全二叉树。

  • 物理上:数组
  • 逻辑上:二叉树

链式存储

        链表来表示一棵二叉树。

  • 二叉链:数据域和左右指针域
  • 三叉链:数据域和左右上指针域

堆 - 顺序存储

        堆是一种特殊的完全二叉树,只不过父亲与儿子节点间有关系。顺序存储的完全二叉树典型的就是堆。(普通的二叉树是不适合用数组来存储的,因为可能会存在大量的空间浪费。而完全二叉树更适合使用顺序结构存储)

堆的性质

  • 堆中某个节点的值总是不大于或不小于其父节点的值
    • 小堆:父亲位,比孩子位,要小
    • 大堆:父亲位,比孩子位,要大
  • 堆总是一棵完全二叉树

堆的实现

#include <iostream>
#include <cassert>namespace qcr_heap
{typedef int HeapType;struct Heap{int64_t _capacity; // 动态开辟可用大小int64_t _size;     // 实际数据占用大小HeapType *_array;  // 动态开辟一维数组};/********** 初始化堆*********/void HeapInit(Heap *heap){assert(heap);heap->_capacity = 0;heap->_size = 0;heap->_array = 0;}/********** 销毁堆*********/void HeapDestory(Heap *heap){assert(heap);heap->_capacity = 0;heap->_size = 0;free(heap->_array);heap->_array = nullptr;}/********** 小根堆*********/bool less(HeapType element_1, HeapType element_2){return element_1 < element_2;}/********** 大根堆*********/bool greater(HeapType element_1, HeapType element_2){return element_1 > element_2;}/********** 交换数据*********/void swap(HeapType *element_1, HeapType *element_2){HeapType tmp = *element_1;*element_1 = *element_2;*element_2 = tmp;}/****************************** 向上调整*   heap: 输入型参数,堆地址*   child: 输入型参数,排序的插入节点*   Func: 输入型参数,大小堆*****************************/void AdjustUp(Heap *heap, int64_t child, bool (*Func)(HeapType, HeapType)){assert(heap);int64_t parent = (child - 1) / 2;while (child > 0){if (Func(heap->_array[child], heap->_array[parent])){swap(&(heap->_array[child]), &(heap->_array[parent]));child = parent;parent = (child - 1) / 2;}elsebreak;}}/****************************** 向下调整*   heap: 输入型参数,堆地址*   root: 输入型参数,排序的根节点*   Func: 输入型参数,大小堆*****************************/void AdjustDown(Heap *heap, int64_t root, bool (*Func)(HeapType, HeapType)){assert(heap);int64_t parent = root;int64_t child = parent * 2 + 1;while (child < heap->_size){if (child + 1 < heap->_size && Func(heap->_array[child + 1], heap->_array[child])){child++;}if (Func(heap->_array[child], heap->_array[parent])){swap(&(heap->_array[child]), &(heap->_array[parent]));parent = child;child = parent * 2 + 1;}else{break; // 符合堆就成立了,就没必要进行交换了。}}}/****************************** 存入数据*   heap: 输入型参数,堆地址*   data: 输入型参数,插入的数据*   Func: 输入型参数,大小堆*****************************/void HeapPush(Heap *heap, HeapType data, bool (*Func)(HeapType, HeapType)){assert(heap);if (heap->_capacity == heap->_size){int64_t newcapacity = heap->_capacity == 0 ? 5 : heap->_capacity * 2;HeapType * tmp = (HeapType *)realloc(heap->_array, heap->_capacity*sizeof(HeapType);if (tmp == nullptr){printf("Capacuty Get Error!\n");exit(-1);}heap->_array = tmp;heap->_capacity = newcapacity;}heap->_array[heap->_size] = data;AdjustUp(heap, heap->_size, Func);(heap->_size)++;}/****************************** 按顺序全部输出*   heap: 输入型参数,堆地址*****************************/void HeapPrint(Heap *heap){assert(heap);for (uint64_t i = 0; i < heap->_size; i++){std::cout << heap->_array[i] << " ";}std::cout << '\n';}/****************************** 首元素*   heap: 输入型参数,堆地址*****************************/HeapType HeapTop(Heap *heap){assert(heap);assert(heap->_size > 0);return heap->_array[0];}/****************************** 判空*   heap: 输入型参数,堆地址*****************************/bool HeapEmpty(Heap *heap){assert(heap);return heap->_size == 0;}/****************************** 有效数据个数*   heap: 输入型参数,堆地址*****************************/int HeapSize(Heap *heap){assert(heap);return heap->_size;}/****************************** 判空*   heap: 输入型参数,堆地址*   Func: 输入型参数,大小堆*****************************/void HeapPop(Heap *heap, bool (*Func)(HeapType, HeapType)){assert(heap);assert(heap->_size > 0);heap->_array[0] = heap->_array[heap->_size - 1];(heap->_size)--;AdjustDown(heap, 0, Func);}
}
已知小根堆为8,15,10,21,34,16,12,删除关键字 8 之后需重建堆,在此过程中,关键字之间的比较次数是()
A、1
B、2
C、3
D、4
------------------------------------------
正确答案:B
------------------------------------------
解析:
        首先我们需要知道,删除对应的调整算法是向下调整,所以其实在比较中有一个很重要的一项就是左右节点的比较,于是此处本质上的比较是需要在加上一次左右节点的比较。

堆的应用

堆排序

        利用堆删除思想来进行排序。

TOP-K问题

1. 用数据集合中前K个元素来建堆

  • 前k个最大的元素,则建小堆
  • 前k个最小的元素,则建大堆
2. 用剩余的N-K个元素依次与堆顶元素来比较,不满足则替换堆顶元素
面试题 17.14. 最小K个数 - 力扣(LeetCode)

class Solution
{
public:// 向上建堆void adjustUp(vector<int> &nums, int child){int parent = (child - 1) / 2;while (child > 0){if (nums[child] > nums[parent]){swap(nums[child], nums[parent]);child = parent;parent = (child - 1) / 2;}else{break;}}}// 向下建堆void adjustDown(vector<int> &nums, int parent){int child = parent * 2 + 1;while (child < nums.size()){if (child + 1 < nums.size() && nums[child + 1] > nums[child]){child++;}if (nums[child] > nums[parent]){swap(nums[child], nums[parent]);parent = child;child = parent * 2 + 1;}else{break;}}}// 堆排序的TOP-k问题vector<int> smallestK(vector<int> &arr, int k){vector<int> nums;nums.reserve(k);// 前K个元素来建堆for (int i = 0; i < k; i++){nums.push_back(arr[i]);adjustUp(nums, nums.size() - 1);}// 对比堆顶元素if (k != 0){for (int i = k; i < arr.size(); i++){if (arr[i] < nums[0]){nums[0] = arr[i];adjustDown(nums, 0);}}}return nums;}
};

        并不是最优的,并且还实现了两个堆算法,编码效率过低。

直接建堆法

        原本利用向上建堆的方式,是并不够完美的,建堆的时间复杂度为O(N)。

        而直接建堆法时间复杂度O(logn),其根本是利用向下建堆实现。

for (int i = (size - 1 - 1) / 2; i >= 0; i--)
{ADjustDown(nums, i);
}
class Solution
{
public:// 向下建堆void adjustDown(vector<int> &nums, int parent){int child = parent * 2 + 1;while (child < nums.size()){if (child + 1 < nums.size() && nums[child + 1] > nums[child]){child++;}if (nums[child] > nums[parent]){swap(nums[child], nums[parent]);parent = child;child = parent * 2 + 1;}else{break;}}}// 堆排序的TOP-k问题vector<int> smallestK(vector<int> &arr, int k){vector<int> nums;nums.reserve(k);// 前K个元素来建堆for (int i = 0; i < k; i++){nums.push_back(arr[i]);}for(int i = (k - 1 - 1) / 2; i >= 0; i--){adjustDown(nums, i);}// 对比堆顶元素if (k != 0){for (int i = k; i < arr.size(); i++){if (arr[i] < nums[0]){nums[0] = arr[i];adjustDown(nums, 0);}}}return nums;}
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/76583.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

衣服材质等整理(时常更新)

参考文章&图片来源 https://zhuanlan.zhihu.com/p/390341736 00. 天然纤维 01. 化学纤维 02. 聚酯纤维&#xff08;即&#xff0c;涤纶&#xff09; 一种由有机二元酸和二元醇通过化学缩聚制成的合成纤维。具有出色的抗皱性和保形性&#xff0c;所制衣物在穿着过程中不容…

Linux操作系统调度基本准则和实现

今天分享一篇处理器调度相关的理论介绍文章。 1&#xff0c;基本概念 在多道程序系统中&#xff0c;进程的数量往往多于处理机的个数&#xff0c;进程争用处理机的情况就在所难免。处理机调度是对处理机进行分配&#xff0c;就是从就绪队列中&#xff0c;按照一定的算法&…

Java实现OTP二次验证

首先简单介绍一下OTP&#xff1a; 简单就是说&#xff0c;一个时长30秒的动态密码&#xff0c;和账号绑定了&#xff0c;如果需要做身份验证的话&#xff0c;可以用这个动态码做二次验证。 更简单说&#xff0c;就是一个安全要求更高的身份验证方式&#xff0c;一个字&#xf…

PyCharm PyQt5 开发环境搭建

环境 python&#xff1a;3.6.x PyCharm&#xff1a;PyCharm 2019.3.5 (Community Edition) 安装PyQT5 pip install PyQt5 -i https://pypi.douban.com/simplepip install PyQt5-tools -i https://pypi.douban.com/simple配置PyCharm PyQtUIC Program &#xff1a;D:\Pytho…

HTTP 握手过程

HTTP 握手过程 TCP 建立连接 3 次握手 客户端请求连接服务器服务器响应成功客户端回应服务器准备开始连接 TCP 结束连接 4 次挥手 客户端向服务器发送&#xff0c;断开请求服务器向客户端发送&#xff0c;还有数据没有传输完毕&#xff0c;请稍等服务器向客户端发送&#x…

桌面软件开发框架 Electron、Qt、WPF 和 WinForms 怎么选?

一、Electron Electron 是一个基于 Web 技术的跨平台桌面应用程序开发框架。它使用 HTML、CSS 和 JavaScript 来构建应用程序界面,并借助 Chromium 渲染引擎提供强大的页面渲染能力。Electron 的主要特点包括: 跨平台:Electron 可以在 Windows、macOS 和 Linux 等多个主流操…

【002】学习笔记之typescript的【任意类型】

任意类型 顶级类型&#xff1a;any类型和 unknown 类型 any类型 声明变量的时候没有指定任意类型默认为any任意类型都可以赋值给any&#xff0c;不需要检查类型。也是他的弊端如果使用any 就失去了TS类型检测的作用 unknown 类型 TypeScript 3.0中引入的 unknown 类型也被认为…

基于Java+SpringBoot+Vue的校企合作项目管理系统【源码+论文+演示视频+包运行成功】

博主介绍&#xff1a;✌csdn特邀作者、博客专家、java领域优质创作者、博客之星&#xff0c;擅长Java、微信小程序、Python、Android等技术&#xff0c;专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专栏推…

玩转单元测试之gtest

引言 程序开发的时候&#xff0c;往往需要编写一些测试样例来完成功能测试&#xff0c;以保证自己的代码在功能上符合预期&#xff0c;能考虑到一些异常边界问题等等。 gtest快速入门 1.引入gtest # 使用的是1.10版本&#xff0c;其他版本可根据需要选择 git clone -b v1.1…

JavaScript-console:JavaScript控制台(Console)常用方法

一、理解 console JavaScript 控制台&#xff08;console&#xff09;是一个开发人员在编写 JavaScript 代码时常用的工具。它是浏览器提供的一种界面&#xff0c;让开发人员能够追踪代码执行的状态和结果。JavaScript 控制台可以记录代码输出的信息、警告和错误&#xff0c;并…

CentOS 8.5修改安装包镜像源

1 备份原配置 cd /etc/yum.repos.d mkdir backup mv *.repo backup/2 下载镜像源 2.1 使用wget下载 wget http://mirrors.aliyun.com/repo/Centos-8.repo2.2 使用curl下载 我是安装的最小版本的系统&#xff0c;默认只有curl curl使用方法&#xff1a;https://www.ruanyife…

每天一道leetcode:433. 最小基因变化(图论中等广度优先遍历)

今日份题目&#xff1a; 基因序列可以表示为一条由 8 个字符组成的字符串&#xff0c;其中每个字符都是 A、C、G 和 T 之一。 假设我们需要调查从基因序列 start 变为 end 所发生的基因变化。一次基因变化就意味着这个基因序列中的一个字符发生了变化。 例如&#xff0c;&quo…