USB Type-C的工作原理与技术分析

news/2024/9/21 22:37:11/文章来源:https://www.cnblogs.com/linhaostudy/p/18353614

USB TYPE-C更加深入的应用,是从USB3.1开始的,这是因为从USB3.1开始,USB的功能开始变得更加丰富起来。

USB 3.1基本规格

3.1基本规格

USB的速度对比

历代USB输出功率及标志比较

有SS字样的代表支持PD,有SS和10的USB标志代表支持USB3.1及PD2.0

历代USB输出功率及标志比较

USB接口

本图来源于:https://www.datapro.net/techinfo/what_is_usb_type_c_usb_c.html

1.功能齐全:同时支持数据、音频、视频传输,还支持充电功能,全集中在一条传输线,可解决传输线太多的问题。

2.支持正反插:type C的脚位是镜像设计,可以支持正反插,硬件上有特别的侦测机制可以判断是正插还是反插,这部分在后面会提到。(半夜手机要充电不用再开灯看接头方向了!)

3.双向传输:数据、电力可以双向传输与充电。

4.向下兼容:可透过转接器(dongle),兼容USB type A、micro B等接口。

5.传输速率快:支持USB 3.1,可支持高达10Gbps的数据传输。

USB Type C脚位功能概述

Type C脚位

脚位说明:

(1)Tx / Rx:两组差分信号传输对,用于数据传输。
(2)CC1 / CC2(Configuration Cannel):侦测正反插、侦测cable有没有接上、判断哪边是DFP(Downstream Facing Port)及UFP(Upstream Facing Port)、配置Vbus、配置Vconn、配置其他模式(alternate or accessory mode)、PD沟通等,总言之,CC透过USB type C接线管理主从两端之间的沟通。

(3)Vbus:供电用(power supply),CC pin接上,Vbus才供电
(4)D+ / D-:向下支持USB2.0用。
(5)SBU1 / SBU2:传输辅助信号用,DP Alt mode可利用此脚位传送AUX数据。
(6)GND:接地,电源和接地有4个,所以可以支持到100W。

CC工作原理及模型

CC工作原理及模型

USB CC脚位工作模型

(1)DFP(Downstream Facing Port)为Host端,另一边的UFP(Upstream Facing Port)则为device端。在DFP

的CC pin会有上拉电阻Rp,在UFP则会有下拉电阻Rd。(Rp决定host端提供给device端的供电能力)

(2)在DFP与UFP未连接之,DFP的VBUS是没有输出的。当DFP与UFP连接后,CC pin相接,DFP的CC pin侦测到UFP pulldown Rd,表示接到Device,DFP便打开VBUS的FET开关,输出VBUS电源给UFP,也就是说在尚未侦测到CC PIN的设定之前,VBUS是不会供应任何电源给UFP端的。

(3)从上图可以明显得知,除了Ra之外,其余电阻都不该出现在cable之中,Ra数值如下图表格所述是一个区间值,一般使用1k ohm,如作为电源供应器的线材则可能会略低于800 ohm:

Ra电阻值区间

Ra电阻值区间

(4)Rp的数值是有被规范的,目前常见的56k ohm被规范为default USB power,一般用于兼容于传统USB构架,故常出现USB2.0/USB3.0的type A/B to type C的线材在type C端加入该电阻。其余电阻值请看

下图表格:
Rp电阻值区间

5)Rd在规范中仅有5.1k ohm,不会在cable中使用。

(6)有Ra的cable,内部一定都有e-mark IC,所以都会支持PD协议。没有Ra的cable一定就是passive cable,内部是没有IC的,当然一定不支持PD协议。

(7)CC pin的侦测可分为以下数种结果:
20210512143032831748

20210512143041734658
Source端CC pin侦测结果总表↑

(8)正反插侦测

由于Type-C是支持正反插,CC pin被用来侦测正反插,从DFP的角度来看,当CC1接到Pulldown(Rd)就是正插,如果是CC2接到Pulldown就是反插。在侦测完正反插后,就会输出相对应的USB信号,例如CC1对应的是SSTX1与SSRX1。下图的右边整合了MUX,由于USB 3.1的data rate高达10 Gbps,为了避免PCB的走线出现分支,所以正反插进来的信号会由MUX来切换,正插时,切换到SSRX1&SSTX1,反插时,切换到SSRX2&SSTX2。
20210512143107879211

Data传输路径示意图(蓝线为正插,红线为反插)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/781327.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

CPU的功能和基本结构

CPU的功能CPU的基本结构运算器控制器CPU中的寄存器 用户可见的寄存器

旧物利用 - 将机顶盒改造为一台Linux开发机!

家里的机顶盒淘汰下来,博主想要物尽其用,看看是否能将其改造为一台Ubuntu"开发机",故开始倒腾前言 机顶盒型号:移动魔百盒CM201-2(CH),芯片组: hi3798mv300(hi3798mv3dmm),其他型号类似 理论上适用于以下SOC:Hi3798Mv100 / Hi3798Cv200 / Hi3798Mv200 / Hi3…

7-3FM模型

FM算法全称为因子分解机 (FactorizationMachine)。它是广告和推荐领域非常著名的算法,在线性回归模型上考虑了特征的二阶交互。适合捕捉大规模稀疏特征(类别特征)当中的特征交互。FM算法全称为因子分解机 (FactorizationMachine)。 它是广告和推荐领域非常著名的算法,在线性回…

这是DDD建模最难的部分(其实很简单)

本文书接上回《为了落地DDD,我是这样“PUA”大家的》 ,欢迎关注我的同名公众号。 https://mp.weixin.qq.com/s/DjC0FSWY1bgJyLPIND5evA什么是最重要的事如果你认真读过前面的文章,那么一定知道我们的核心逻辑:领域驱动是一种价值观,这个价值观是:“领域(边界)”的明确是…

CSP17

请注意:题目背景与题目可能没有关系第一题,性质题,找到序列的最大值与最小值,我们发现如果只有正数的话和只有负数的话都很好处理,正数正序处理类似前缀加,负数后缀加,那如果正负都有,该怎么办呢?其实我们可以吧序列全变为正的或负的吧,但是需要比较一下最大值最小值,…

丰富有趣的颜色空间

颜色空间就像是一套套颜色语言,其将视觉上的颜色以数字的形式定义表示,使其能够准确描述某个颜色简介 颜色是视觉的表现,而自然界的颜色是多姿多彩的,如果让我们用语言描述一个自然界的颜色,有些人可能会用红橙黄绿蓝靛紫,外加一些修饰词,但它不太能够准确的描述一个颜色…

Struts2基础1--创建一个Struts2 Web应用程序

Struts2不仅仅是Struts1 的升级版本,更是一个全新的Struts架构,是当前较为普及和成熟的基于MVC设计模式的Web应用程序框架,并在RIA(Rich Internet Applications)Web应用程序开发中得到了广泛应用,成为最好的Web框架之一。本文将通过详细的步骤来说明如何下载获取相关资源…

STM32学习记录(九):RTC

RTC框图 实时时钟(Real-time clock: RTC)是一个独立的计时器。RTC提供一组连续运行的计数器,可以与合适的软件一起使用,以提供时钟日历功能。可以写入计数器值以设置系统的当前时间/日期。可以选择以下三种作为RTC时钟源:HSE时钟进行128分频 LSE振荡器时钟 LSI振荡器时钟有关…

炒鸡好用的Markdown语法

简介 Markdown是一种轻量级标记语言,它最初由John Gruber和Aaron Swartz在2004年共同创建,可以通过简单、纯文本的语法,快速构建格式化、排版精美的文档。其可与HTML混编,可导出为HTML、PDF、Word等格式的文件 Markdown可以让作者更多地关注内容本身而非格式排版。同样的内…

Arweave区块链私有化部署

Arweave区块链私有化部署Arweave区块链主打数据永久存储,即保存在区块链的数据永久存在、不可篡改。公链主网络arweave.N.1在2024年8月11日累计产生了148万个区块(见下截图所示),区块还在不断产生,大约2分钟产生一个区块。Arweave区块链可以在Ubuntu 22.04LTS或Ubuntu 24.04…

多线程复习总结

1基本概念 1什么是进程什么是线程 进程:是程序执行一次的过程,他是动态的概念,是资源分配的基本单位。一个应用程序(1个进程是一个软件)。 线程:一个进程可以有多个线程,线程是cpu调度的单位,一个进程中的执行场景/执行单元。 对于java程序来说,当在DOS命令窗口中输入…