Preface
这场其实是昨天打的,但因为今天没训练就摆烂拖到今天才补题和写博客
这场题感觉都挺可做的,但前期出题有点慢导致后期没时间了,徐神和祁神赛后 20min 过了 J 有点可惜
A. Bandits
题都没看,不做评价
B. Combination Locks
不难发现这题本质就是在 0/1 串上操作,每次移动到另一个与之汉明距离为 \(1\) 的串
考虑把图建出来,不难发现这是个二分图,即根据状态中 \(1\) 的个数的奇偶性将点分为了两类
二分图上的博弈算是个经典问题,只要看起点是否在最大匹配上即可,具体证明可以看 这里
#include<cstdio>
#include<iostream>
#include<vector>
#define RI register int
#define CI const int&
using namespace std;
const int N=(1<<10)+5;
int t,n,m,ban[N],vis[N],pre[N]; char A[N],B[N]; vector <int> v[N];
inline int find(CI now,CI idx)
{for (auto to:v[now]){if (vis[to]==idx) continue; vis[to]=idx;if (pre[to]==-1||find(pre[to],idx)) return pre[to]=now,1;}return 0;
}
inline int work(void)
{for (RI mask=0;mask<(1<<n);++mask){v[mask].clear();if (__builtin_popcount(mask)%2==1) continue;if (ban[mask]) continue;for (RI i=0;i<n;++i){int nxt=mask^(1<<i);if (ban[nxt]) continue;v[mask].push_back(nxt);//printf("%d -> %d\n",mask,nxt);}}int match=0,idx=0;for (RI i=0;i<(1<<n);++i) vis[i]=pre[i]=-1;for (RI mask=0;mask<(1<<n);++mask){if (__builtin_popcount(mask)%2==1) continue;if (ban[mask]) continue;match+=find(mask,++idx);}return match;
}
int main()
{for (scanf("%d",&t);t;--t){scanf("%d%d",&n,&m);for (RI i=0;i<(1<<n);++i) ban[i]=0;scanf("%s%s",A,B); int st=0;for (RI i=0;i<n;++i) if (A[i]==B[i]) st|=(1<<i);for (RI i=1;i<=m;++i){scanf("%s",A); int mask=0;for (RI j=0;j<n;++j) if (A[j]=='=') mask|=(1<<j);ban[mask]=1;}int pre_match=work();//printf("pre = %d\n",pre_match);ban[st]=1;int alt_match=work();//printf("alt = %d\n",alt_match);puts(pre_match!=alt_match?"Alice":"Bob");}return 0;
}
C. Constellations
祁神和徐神中期开的,当时我在想 B 所以题都没看
#include<bits/stdc++.h>
using namespace std;
#define int long longstruct Pt{int x, y;Pt operator-(const Pt &b)const{return Pt{x-b.x, y-b.y};}int len2()const{return x*x+y*y;}
};const int N = 4005;
int n;
Pt pt[N];
int dis[N][N], sz[N], tot;
bool del[N];struct Node{int u, v;bool operator>(const Node &b)const{int res1 = dis[u][v] * sz[b.u]*sz[b.v];int res2 = dis[b.u][b.v] * sz[u]*sz[v];if (res1 != res2) return res1 < res2;else return (u!=b.u ? u<b.u : v<b.v); }bool operator<(const Node &b)const{return b > (*this);}
};signed main(){ios::sync_with_stdio(0); cin.tie(0);cin >> n;tot = n;for (int i=1; i<=n; ++i){cin >> pt[i].x >> pt[i].y;sz[i] = 1;}priority_queue<Node> Q;for (int i=1; i<=n; ++i) for (int j=i+1; j<=n; ++j) dis[i][j] = dis[j][i] = (pt[i]-pt[j]).len2();for (int i=1; i<=n; ++i) for (int j=i+1; j<=n; ++j) Q.push(Node{i, j});while (!Q.empty()){auto [u, v] = Q.top(); Q.pop();if (del[u] || del[v]) continue;del[u] = del[v] = true;int x = ++tot;sz[x] = sz[u]+sz[v];for (int i=1; i<tot; ++i) if (!del[i]) {dis[i][x] = dis[x][i] = dis[u][i]+dis[v][i];Q.push(Node{i, x});}cout << sz[x] << '\n';}return 0;
}
D. Deforestation
难点在于阅读题意
仔细看题后发现在某个点处最多只能将子节点打包一次,因此贪心地将最小的子节点打包即可
#include<cstdio>
#include<iostream>
#include<vector>
#include<algorithm>
#define RI register int
#define CI const int&
using namespace std;
int W,ans;
inline int DFS(void)
{int x,y; scanf("%d%d",&x,&y);vector <int> vec(y);for (RI i=0;i<y;++i){int tmp=DFS(); ans+=tmp/W; vec[i]=tmp%W;}sort(vec.begin(),vec.end());int sum=0;for (RI i=0;i<y;++i)if (sum+vec[i]<=W) sum+=vec[i]; else ++ans;return x+sum;
}
int main()
{scanf("%d",&W);ans+=(DFS()+W-1)/W;return printf("%d",ans),0;
}
E. Denormalization
这题也是祁神和徐神开出来的,我题意都不知道
#include<bits/stdc++.h>
using namespace std;using LD = double;const int N = 1e4+5;
const LD eps = 5e-7;
int n, r[N], ans[N];
LD A[N], rt[N];int gcd(int a, int b){return 0==b ? a : gcd(b, a%b);}LD check(){int64_t d = 0;for (int i=1; i<=n; ++i) d += r[i]*r[i];LD dt = sqrt(d);for (int i=1; i<=n; ++i) rt[i] = r[i]/dt;LD res = 0;for (int i=1; i<=n; ++i){res = max(abs(rt[i] - A[i]), res);}return res;
}signed main(){ios::sync_with_stdio(0); cin.tie(0);cin >> n;int mx=1;for (int i=1; i<=n; ++i){cin >> A[i];if (A[i] > A[mx]) mx=i;}LD minv = 1e30;for (int i=1; i<=10000; ++i){LD res = i / A[mx];for (int j=1; j<=n; ++j) r[j] = round(A[j]*res);LD rs = check();if(rs < minv) minv = rs, memcpy(ans, r, sizeof(int) * (n + 1));// std::cerr << r[mx] << ' ' << rs << char(10);}// std::cerr << "Error = " << minv << char(10);int g = ans[1];for(int i=1; i<=n; ++i) g = __gcd(g, ans[i]);for (int i=1; i<=n; ++i){cout << ans[i] / g << '\n';}return 0;
}
F. Differences
赛时一直在想随机化之类的神秘东西,中间一度想到 Hash 但没想到转化,最后也是不了了之
考虑枚举答案串 \(S_x\),考虑如何检验,我们可以尝试维护一个数组 \(\{d\}\),其中 \(d_i\) 表示第 \(i\) 个串与 \(S_x\) 的汉明距离
考虑枚举 \(S_x\) 每一位上的字符,若当前位为 A
,则显然当前位为 \(B,C,D\) 的这些串对应的 \(\{d\}\) 位置上要加一
用 Hash 维护 \(\{d\}\) 数组即可,复杂度 \(O(nm)\)
#include<cstdio>
#include<iostream>
#include<string>
#define RI register int
#define CI const int&
using namespace std;
const int N=100005;
const int mod1=998244353,mod2=1e9+7;
struct Hasher
{int x,y;inline Hasher(CI X=0,CI Y=0){x=X; y=Y;}friend inline bool operator == (const Hasher& A,const Hasher& B){return A.x==B.x&&A.y==B.y;}friend inline Hasher operator + (const Hasher& A,const Hasher& B){return Hasher((A.x+B.x)%mod1,(A.y+B.y)%mod2);}friend inline Hasher operator - (const Hasher& A,const Hasher& B){return Hasher((A.x-B.x+mod1)%mod1,(A.y-B.y+mod2)%mod2);}friend inline Hasher operator * (const Hasher& A,const Hasher& B){return Hasher(1LL*A.x*B.x%mod1,1LL*A.y*B.y%mod2);}
}pw[N],f[N][4];
int n,m,k; string s[N];
const Hasher seed=Hasher(31,131);
int main()
{ios::sync_with_stdio(0); cin.tie(0);cin>>n>>m>>k;pw[0]=Hasher(1,1); for (RI i=1;i<=n;++i) pw[i]=pw[i-1]*seed;Hasher all_f,all_k;for (RI i=1;i<=n;++i){cin>>s[i];for (RI j=0;j<m;++j)f[j][s[i][j]-'A']=f[j][s[i][j]-'A']+pw[i];}for (RI i=0;i<m;++i) for (RI j=0;j<4;++j) all_f=all_f+f[i][j];for (RI i=1;i<=n;++i) all_k=all_k+pw[i]*Hasher(k,k);for (RI i=1;i<=n;++i){Hasher cur=all_f;for (RI j=0;j<m;++j) cur=cur-f[j][s[i][j]-'A'];if (cur==all_k-pw[i]*Hasher(k,k)) return cout<<i,0;}return 0;
}
G. Greedy Drawers
唉构造,后期徐神和祁神都去开 J 了,留我一个构造苦手看 G,最后也是啥也每构造出来
看了一眼题解只能说是巧妙,其实就是构造如下的子结构,使得红色的点有 \(\frac{1}{2}\) 的概率选错
而具体构造时,我们可以令编号为 \(i\) 的物品的长宽为 \((i,2n-i)\)
此时长宽为 \((r,2n-l)\) 的抽屉就恰好可以 cover 编号 \(\in[l,r]\) 的物品,要构造上图的 Case 就很简单了,最后重复多次这种子结构即可
#include<cstdio>
#include<iostream>
#define RI register int
#define CI const int&
using namespace std;
int n;
int main()
{scanf("%d",&n);for (RI i=1;i<=n;++i) printf("%d %d\n",i,2*n-i);putchar('\n');auto cover=[&](CI l,CI r){printf("%d %d\n",r,2*n-l);};int st=0; while (st+8<=n){for (RI i=0;i<3;++i) cover(st+1,st+3),cover(st+5,st+8);cover(st+2,st+4); cover(st+4,st+6); st+=8;}while (st<n) cover(st+1,st+1),++st;return 0;
}
H. Insertions
题都没看,不做评价
I. Money Laundering
题都没看,不做评价
J. Mortgage
经典动态凸壳,一般这种题我就看个乐呵
不难发现将每个位置的前缀和数组求出后,就变成求一段区间内和一个该区间左端点的斜率最小值
从右往左扫描线,不难发现待选点构成了一段凸壳,但众所周知凸壳插入容易删除难,这题还有变化的右端点要处理
解决方法也很经典,用树状数组维护凸壳,询问的时候在每个节点处三分/二分出最优值即可,总复杂度 \(O(m\log^2 n)\)
#include<bits/stdc++.h>
using namespace std;#define int long longconst int N = 2e5+5;
int n, m, A[N], sum[N];
struct Node{int R, id;bool operator<(const Node &b)const{return R!=b.R ? R>b.R : id<b.id;}
};
vector<Node> qry[N];
int ans[N];struct Convh{vector<int> stk; int sz=0;void add(int id){while (sz>1 &&(sum[stk[sz-1]]-sum[id])*(stk[sz-2]-stk[sz-1]) >(sum[stk[sz-2]]-sum[stk[sz-1]])*(stk[sz-1]-id))stk.pop_back(), --sz;stk.push_back(id); ++sz;} int find(int id){int L=0, R=sz-1;while (R - L > 20){int M1 = L+(R-L)/2, M2 = M1+1;int res1 = (sum[stk[M1]]-sum[id])*(stk[M2]-id);int res2 = (sum[stk[M2]]-sum[id])*(stk[M1]-id);if (res1 == res2) L=R;else if (res1 < res2) R = M2;else L = M1;// std::cerr << "FUCK\n";}int ans = 0x7f7f7f7f;while(L <= R) {if(sum[stk[L]]-sum[id] < 0) return -1;else ans = min(ans, (sum[stk[L]]-sum[id])/(stk[L]-id)), L++;}if (ans>=0) return ans;else return -1;}
};Convh c[N];signed main(){ios::sync_with_stdio(0); cin.tie(0);cin >> n >> m;for (int i=1; i<=n; ++i) cin >> A[i], sum[i] = sum[i-1]+A[i];for (int i=1; i<=m; ++i){int s, k; cin >> s >> k;qry[s-1].push_back(Node{s+k-1, i});}for (int i=0; i<n; ++i) sort(qry[i].begin(), qry[i].end());for (int i=n; i>=0; --i){for(auto [q, id]: qry[i]) {int l = i + 1, r = q + 1, a = 0x7f7f7f7f;for(int j = r; j; j -= j&-j) if(c[j].sz) a = std::min(a, c[j].find(l - 1));ans[id] = a;}for(int j = i + 1; j <= n + 1; j += j&-j) c[j].add(i);}for(int i = 1; i <= m; ++i) {if(ans[i] < 0) std::cout << "stay with parents\n";else std::cout << ans[i] << char(10);}return 0;
}
K. Skills in Pills
不难发现可以假设允许一天吃两片药,这样在 \(\operatorname{LCM}(k,j)\) 那天会出现冲突
要解决冲突实际上就是将某片药的时间提前一天即可,刚开始想着贪心提前间隔更小的药,后面手玩了下发现样例都过不去
遂决定直接大力 DP,令 \(f_i\) 表示到了第 \(i\) 天,且此时在第 \(i\) 天恰好有冲突时最少要吃几片药
转移分两种情况讨论下即可,两种情况的贡献可以提前预处理出来,总复杂度 \(O(n)\)
#include<cstdio>
#include<iostream>
#include<algorithm>
#define int long long
#define RI register int
#define CI const int&
using namespace std;
const int N=1e6+5,INF=1e9;
int n,A,B,f[N],x_1,y_1,x_2,y_2,ans;
signed main()
{scanf("%lld%lld%lld",&A,&B,&n);int lcm=A*B/__gcd(A,B);if (n<lcm) return printf("%lld",n/A+n/B),0;for (RI i=0;i<=n;++i) f[i]=INF; ans=INF;f[lcm]=lcm/A+lcm/B;x_1=y_1=-1;for (RI i=1;B*i+1<=n;++i)if ((B*i+1)%A==0) { x_1=(B*i+1)/A; y_1=i; break; }x_2=y_2=-1;for (RI i=1;A*i+1<=n;++i)if ((A*i+1)%B==0) { y_2=(A*i+1)/B; x_2=i; break; }for (RI i=lcm;i<=n;++i){if (f[i]==INF) continue;if (x_1!=-1&&i+B*y_1<=n) f[i+B*y_1]=min(f[i+B*y_1],f[i]+x_1+y_1);else ans=min(ans,f[i]+(n-i)/B+(n-i+1)/A);if (x_2!=-1&&i+A*x_2<=n) f[i+A*x_2]=min(f[i+A*x_2],f[i]+x_2+y_2);else ans=min(ans,f[i]+(n-i)/A+(n-i+1)/B);}return printf("%lld",ans),0;
}
L. The Game
题意看懂就随便写的模拟题,代码看起来挺长其实中间一大段都是赋值粘贴的,其实想清楚了很好写
#include<cstdio>
#include<iostream>
#include<vector>
#include<algorithm>
#define RI register int
#define CI const int&
using namespace std;
int main()
{//freopen("ex_tests_2.in","r",stdin); freopen("my.ans","w",stdout);vector <int> pile,hand,row[4];row[0].push_back(1); row[1].push_back(1);row[2].push_back(100); row[3].push_back(100);for (RI i=2;i<=99;++i){int x; scanf("%d",&x); pile.push_back(x);}reverse(pile.begin(),pile.end());for (RI i=1;i<=8;++i) hand.push_back(pile.back()),pile.pop_back();for (;!hand.empty();){{int back_trick=-1,row_id=-1;for (RI i=0;i<hand.size();++i){int x=hand[i];if (row[0].back()>x&&row[0].back()==x+10){back_trick=i; row_id=0; break;}if (row[1].back()>x&&row[1].back()==x+10){back_trick=i; row_id=1; break;}if (row[2].back()<x&&row[2].back()==x-10){back_trick=i; row_id=2; break;}if (row[3].back()<x&&row[3].back()==x-10){back_trick=i; row_id=3; break;}}if (back_trick!=-1){row[row_id].push_back(hand[back_trick]);hand.erase(hand.begin()+back_trick);} else{int hand_id=-1,dlt=1e9,row_id=-1;for (RI i=0;i<hand.size();++i){int x=hand[i],cur_dlt=1e9,cur_id=-1;if (row[0].back()<x){if (x-row[0].back()<cur_dlt) cur_dlt=x-row[0].back(),cur_id=0;}if (row[1].back()<x){if (x-row[1].back()<cur_dlt) cur_dlt=x-row[1].back(),cur_id=1;}if (row[2].back()>x){if (row[2].back()-x<cur_dlt) cur_dlt=row[2].back()-x,cur_id=2;}if (row[3].back()>x){if (row[3].back()-x<cur_dlt) cur_dlt=row[3].back()-x,cur_id=3;}if (cur_dlt<dlt) hand_id=i,dlt=cur_dlt,row_id=cur_id;}if (hand_id==-1) break;row[row_id].push_back(hand[hand_id]);hand.erase(hand.begin()+hand_id);}}{int back_trick=-1,row_id=-1;for (RI i=0;i<hand.size();++i){int x=hand[i];if (row[0].back()>x&&row[0].back()==x+10){back_trick=i; row_id=0; break;}if (row[1].back()>x&&row[1].back()==x+10){back_trick=i; row_id=1; break;}if (row[2].back()<x&&row[2].back()==x-10){back_trick=i; row_id=2; break;}if (row[3].back()<x&&row[3].back()==x-10){back_trick=i; row_id=3; break;}}if (back_trick!=-1){row[row_id].push_back(hand[back_trick]);hand.erase(hand.begin()+back_trick);} else{int hand_id=-1,dlt=1e9,row_id=-1;for (RI i=0;i<hand.size();++i){int x=hand[i],cur_dlt=1e9,cur_id=-1;if (row[0].back()<x){if (x-row[0].back()<cur_dlt) cur_dlt=x-row[0].back(),cur_id=0;}if (row[1].back()<x){if (x-row[1].back()<cur_dlt) cur_dlt=x-row[1].back(),cur_id=1;}if (row[2].back()>x){if (row[2].back()-x<cur_dlt) cur_dlt=row[2].back()-x,cur_id=2;}if (row[3].back()>x){if (row[3].back()-x<cur_dlt) cur_dlt=row[3].back()-x,cur_id=3;}if (cur_dlt<dlt) hand_id=i,dlt=cur_dlt,row_id=cur_id;}if (hand_id==-1) break;row[row_id].push_back(hand[hand_id]);hand.erase(hand.begin()+hand_id);}}if (!pile.empty()){hand.push_back(pile.back()); pile.pop_back();hand.push_back(pile.back()); pile.pop_back();}}for (RI i=0;i<4;++i){for (auto x:row[i]) printf("%d ",x); putchar('\n');}for (auto x:hand) printf("%d ",x); putchar('\n');reverse(pile.begin(),pile.end());for (auto x:pile) printf("%d ",x); putchar('\n');return 0;
}
Postscript
明天最后训一场暑假就结束了,也是成为大三老登了,希望最后一个赛季不留遗憾吧