1. 初识算法

1. 什么是算法

定义 : 在数学和计算机科学领域,算法是一系列有限的严谨指令,通常用于解决一类特定问题或执行计算

In mathematics and computer science, an algorithm (/ˈælɡərɪðəm/) is a finite sequence of rigorous instructions, typically used to solve a class of specific problems or to perform a computation.1

Introduction to Algorithm2

不正式的说,算法就是任何定义优良的计算过程:接收一些值作为输入,在有限的时间内,产生一些值作为输出。

Informally, an algorithm is any well-defined computational procedure that takes some value, or set of values, as input and produces some value, or set of values, as output in a finite amount of time.

2. 什么是数据结构

定义 : 在计算机科学领域,数据结构是一种数据组织、管理和存储格式,通常被选择用来高效访问数据

In computer science, a data structure is a data organization, management, and storage format that is usually chosen for efficient access to data

Introduction to Algorithm2

数据结构是一种存储和组织数据的方式,旨在便于访问和修改

A data structure is a way to store and organize data in order to facilitate access and modifications

可以说,程序 = 数据结构 + 算法,它们是每一位程序员的基本功,下来我们通过对一个非常著名的二分查找算法的讲解来认识一下算法

3. 二分查找

二分查找算法也称折半查找,是一种非常高效的工作于有序数组的查找算法。后续的课程中还会学习更多的查找算法,但在此之前,不妨用它作为入门。

3.1 基础版

需求:在有序数组 A 内,查找值 target

  • 如果找到返回索引
  • 如果找不到返回 -1

算法描述:

前提 给定一个内含 \(n\) 个元素的有序数组 \(A\),满足 \(A_{0}\leq A_{1}\leq A_{2}\leq \cdots \leq A_{n-1}\),一个待查值 \(target\)
1 设置 \(i=0\)\(j=n-1\)
2 如果 \(i \gt j\),结束查找,没找到
3 设置 \(m = floor(\frac {i+j}{2})\) \(m\) 为中间索引,\(floor\) 是向下取整(\(\leq \frac {i+j}{2}\) 的最小整数)
4 如果 \(target < A_{m}\) 设置 \(j = m - 1\),跳到第2步
5 如果 \(A_{m} < target\) 设置 \(i = m + 1\),跳到第2步
6 如果 \(A_{m} = target\),结束查找,找到了

P.S.

  • 对于一个算法来讲,都有较为严谨的描述,上面是一个例子
  • 后续讲解时,以简明直白为目标,不会总以上面的方式来描述算法

java 实现

public static int binarySearch(int[] a, int target) {int i = 0, j = a.length - 1;while (i <= j) {int m = (i + j) / 2;if (target < a[m]) {            // 在左边j = m - 1;} else if (a[m] < target) {     // 在右边i = m + 1;} else {return m;}}return -1;
}
  • i,j 对应着搜索区间 [0,a.length-1](注意是闭合的区间),i<=j 意味着搜索区间内还有未比较的元素,i,j 指向的元素也可能是比较的目标

    • 思考:如果不加 i==j 行不行?
    • 回答:不行,因为这意味着 i,j 指向的元素会漏过比较
  • m 对应着中间位置,中间位置左边和右边的元素可能不相等(差一个),不会影响结果

  • 如果某次未找到,那么缩小后的区间内不包含 m

3.2 改变版

另一种写法

int m = (i + j) / 2;​ 二进制溢出就变成负数了

public static int binarySearch(int[] a, int target) {int i = 0, j = a.length;while (i < j) {int m = (i + j) >>> 1;if (target < a[m]) {            // 在左边j = m;} else if (a[m] < target) {     // 在右边i = m + 1;} else {return m;}}return -1;
}
  • i , j 对应着搜索区间 [0,a.length)(注意是左闭右开的区间),i < j 意味着搜索区间内还有未比较的元素,j 指向的一定不是查找目标

    • 思考:为啥这次不加 i==j 的条件了?
    • 回答:这回 j 指向的不是查找目标,如果还加 i==j 条件,就意味着 j 指向的还会再次比较,找不到时,会死循环
  • 如果某次要缩小右边界,那么 j=m,因为此时的 m 已经不是查找目标了

4. 衡量算法好坏

时间复杂度

下面的查找算法也能得出与之前二分查找一样的结果,那你能说出它差在哪里吗?

public static int search(int[] a, int k) {for (int i = 0;i < a.length;i++) {if (a[i] == k) {return i;}}return -1;
}

考虑最坏情况下(没找到)例如 [1,2,3,4]​ 查找 5

  • int i = 0​ 只执行一次
  • i < a.length​ 受数组元素个数 \(n\) 的影响,比较 \(n+1\)
  • i++​ 受数组元素个数 \(n\) 的影响,自增 \(n\)
  • a[i] == k​ 受元素个数 \(n\) 的影响,比较 \(n\)
  • return -1​,执行一次

粗略认为每行代码执行时间是 \(t\),假设 \(n=4\) 那么

  • 总执行时间是 \((1+4+1+4+4+1)*t = 15t\)
  • 可以推导出更一般地公式为,\(T = (3*n+3)t\)

如果套用二分查找算法,还是 [1,2,3,4]​ 查找 5

public static int binarySearch(int[] a, int target) {int i = 0, j = a.length - 1;while (i <= j) {int m = (i + j) >>> 1;if (target < a[m]) {			// 在左边j = m - 1;} else if (a[m] < target) {		// 在右边i = m + 1;} else {return m;}}return -1;
}
  • int i = 0, j = a.length - 1​ 各执行 1 次

  • i <= j​ 比较 \(floor(\log_{2}(n)+1)\) 再加 1 次

  • (i + j) >>> 1​ 计算 \(floor(\log_{2}(n)+1)\)

  • 接下来 if() else if() else​ 会执行 \(3* floor(\log_{2}(n)+1)\) 次,分别为

    • if 比较
    • else if 比较
    • else if 比较成立后的赋值语句
  • return -1​,执行一次

结果:

  • 总执行时间为 \((2 + (1+3) + 3 + 3 * 3 +1)*t = 19t\)
  • 更一般地公式为 \((4 + 5 * floor(\log_{2}(n)+1))*t\)

注意:

左侧未找到和右侧未找到结果不一样,这里不做分析

两个算法比较,可以看到 \(n\) 在较小的时候,二者花费的次数差不多

image-20240830084201-jeaz8j3

但随着 \(n\) 越来越大,比如说 \(n=1000\) 时,用二分查找算法(红色)也就是 \(54t\),而蓝色算法则需要 \(3003t\)

image-20240830084246-oe5i379

画图采用的是 Desmos | 图形计算器

计算机科学中,时间复杂度是用来衡量:一个算法的执行,随数据规模增大,而增长的时间成本

  • 不依赖于环境因素

如何表示时间复杂度呢?

  • 假设算法要处理的数据规模是 \(n\),代码总的执行行数用函数 \(f(n)\) 来表示,例如:

    • 线性查找算法的函数 \(f(n) = 3*n + 3\)
    • 二分查找算法的函数 \(f(n) = (floor(log_2(n)) + 1) * 5 + 4\)
  • 为了对 \(f(n)\) 进行化简,应当抓住主要矛盾,找到一个变化趋势与之相近的表示法

\(O\) 表示法[^4]

image-20221108103846566

其中

  • \(c, c_1, c_2\) 都为一个常数
  • \(f(n)\) 是实际执行代码行数与 n 的函数
  • \(g(n)\) 是经过化简,变化趋势与 \(f(n)\) 一致的 n 的函数

渐进上界

渐进上界(asymptotic upper bound):从某个常数 \(n_0\)开始,\(c*g(n)\) 总是位于 \(f(n)\) 上方,那么记作 \(O(g(n))\)

  • 代表算法执行的最差情况

例1

  • \(f(n) = 3*n+3\)
  • \(g(n) = n\)
  • \(c=4\),在\(n_0=3\) 之后,\(g(n)\) 可以作为 \(f(n)\) 的渐进上界,因此表示法写作 \(O(n)\)

例2

  • \(f(n) = 5*floor(log_2(n)) + 9\)
  • \(g(n) = log_2(n)\)
  • \(O(log_2(n))\)

已知 \(f(n)\) 来说,求 \(g(n)\)

  • 表达式中相乘的常量,可以省略,如

    • \(f(n) = 100*n^2\) 中的 \(100\)
  • 多项式中数量规模更小(低次项)的表达式,如

    • \(f(n)=n^2+n\) 中的 \(n\)
    • \(f(n) = n^3 + n^2\) 中的 \(n^2\)
  • 不同底数的对数,渐进上界可以用一个对数函数 \(\log n\) 表示

    • 例如:\(log_2(n)\) 可以替换为 \(log_{10}(n)\),因为 \(log_2(n) = \frac{log_{10}(n)}{log_{10}(2)}\),相乘的常量 \(\frac{1}{log_{10}(2)}\) 可以省略
  • 类似的,对数的常数次幂可省略

    • 如:\(log(n^c) = c * log(n)\)

常见大 \(O\) 表示法

image-20221108114915524

按时间复杂度从低到高

  • 黑色横线 \(O(1)\),常量时间,意味着算法时间并不随数据规模而变化
  • 绿色 \(O(log(n))\),对数时间
  • 蓝色 \(O(n)\),线性时间,算法时间与数据规模成正比
  • 橙色 \(O(n*log(n))\),拟线性时间
  • 红色 \(O(n^2)\) 平方时间
  • 黑色朝上 \(O(2^n)\) 指数时间
  • 没画出来的 \(O(n!)\)

渐进下界

渐进下界(asymptotic lower bound):从某个常数 \(n_0\)开始,\(c*g(n)\) 总是位于 \(f(n)\) 下方,那么记作 \(\Omega(g(n))\)

渐进紧界

渐进紧界(asymptotic tight bounds):从某个常数 \(n_0\)开始,\(f(n)\) 总是在 \(c_1*g(n)\)\(c_2*g(n)\) 之间,那么记作 \(\Theta(g(n))\)

空间复杂度

与时间复杂度类似,一般也使用大 \(O\) 表示法来衡量:一个算法执行随数据规模增大,而增长的额外空间成本

public static int binarySearchBasic(int[] a, int target) {int i = 0, j = a.length - 1;    // 设置指针和初值while (i <= j) {                // i~j 范围内有东西int m = (i + j) >>> 1;if(target < a[m]) {         // 目标在左边j = m - 1;} else if (a[m] < target) { // 目标在右边i = m + 1;} else {                    // 找到了return m;}}return -1;
}

二分查找性能

下面分析二分查找算法的性能

时间复杂度

  • 最坏情况:\(O(\log n)\)
  • 最好情况:如果待查找元素恰好在数组中央,只需要循环一次 \(O(1)\)

空间复杂度

  • 需要常数个指针 \(i,j,m\),因此额外占用的空间是 \(O(1)\)

5. 再看二分查找

5.1 平衡版

public static int binarySearchBalance(int[] a, int target) {int i = 0, j = a.length;while (1 < j - i) {int m = (i + j) >>> 1;if (target < a[m]) {j = m;} else {i = m;}}return (a[i] == target) ? i : -1;
}

思想:

  1. 左闭右开的区间,\(i\) 指向的可能是目标,而 \(j\) 指向的不是目标

  2. 不奢望循环内通过 \(m\) 找出目标, 缩小区间直至剩 1 个, 剩下的这个可能就是要找的(通过 \(i\)

    • \(j - i > 1\) 的含义是,在范围内待比较的元素个数 > 1
  3. 改变 \(i\) 边界时,它指向的可能是目标,因此不能 \(m+1\)

  4. 循环内的平均比较次数减少了

  5. 时间复杂度 \(\Theta(log(n))\)

5.2 Java 版

private static int binarySearch0(long[] a, int fromIndex, int toIndex,long key) {int low = fromIndex;int high = toIndex - 1;while (low <= high) {int mid = (low + high) >>> 1;long midVal = a[mid];if (midVal < key)low = mid + 1;else if (midVal > key)high = mid - 1;elsereturn mid; // key found}return -(low + 1);  // key not found.
}
  • 例如 \([1,3,5,6]\) 要插入 \(2\) 那么就是找到一个位置,这个位置左侧元素都比它小

    • 等循环结束,若没找到,low 左侧元素肯定都比 target 小,因此 low 即插入点
  • 插入点取负是为了与找到情况区分

  • -1 是为了把索引 0 位置的插入点与找到的情况进行区分

3) Leftmost 与 Rightmost

有时我们希望返回的是最左侧的重复元素,如果用 Basic 二分查找

  • 对于数组 \([1, 2, 3, 4, 4, 5, 6, 7]\),查找元素4,结果是索引3
  • 对于数组 \([1, 2, 4, 4, 4, 5, 6, 7]\),查找元素4,结果也是索引3,并不是最左侧的元素
public static int binarySearchLeftmost1(int[] a, int target) {int i = 0, j = a.length - 1;int candidate = -1;while (i <= j) {int m = (i + j) >>> 1;if (target < a[m]) {j = m - 1;} else if (a[m] < target) {i = m + 1;} else {candidate = m; // 记录候选位置j = m - 1;     // 继续向左}}return candidate;
}

如果希望返回的是最右侧元素

public static int binarySearchRightmost1(int[] a, int target) {int i = 0, j = a.length - 1;int candidate = -1;while (i <= j) {int m = (i + j) >>> 1;if (target < a[m]) {j = m - 1;} else if (a[m] < target) {i = m + 1;} else {candidate = m; // 记录候选位置i = m + 1;	   // 继续向右}}return candidate;
}

应用

对于 Leftmost 与 Rightmost,可以返回一个比 -1 更有用的值

Leftmost 改为

public static int binarySearchLeftmost(int[] a, int target) {int i = 0, j = a.length - 1;while (i <= j) {int m = (i + j) >>> 1;if (target <= a[m]) {j = m - 1;} else {i = m + 1;}}return i; 
}
  • leftmost 返回值的另一层含义:\(\lt target\) 的元素个数
  • 小于等于中间值,都要向左找

Rightmost 改为

public static int binarySearchRightmost(int[] a, int target) {int i = 0, j = a.length - 1;while (i <= j) {int m = (i + j) >>> 1;if (target < a[m]) {j = m - 1;} else {i = m + 1;}}return i - 1;
}
  • 大于等于中间值,都要向右找

几个名词

image-20221125174155058

范围查询

  • 查询 \(x \lt 4\)\(0 .. leftmost(4) - 1\)
  • 查询 \(x \leq 4\)\(0 .. rightmost(4)\)
  • 查询 \(4 \lt x\)\(rightmost(4) + 1 .. \infty\)
  • 查询 \(4 \leq x\)\(leftmost(4) .. \infty\)
  • 查询 \(4 \leq x \leq 7\)\(leftmost(4) .. rightmost(7)\)
  • 查询 \(4 \lt x \lt 7\)\(rightmost(4)+1 .. leftmost(7)-1\)

求排名\(leftmost(target) + 1\)

  • \(target\) 可以不存在,如:\(leftmost(5)+1 = 6\)
  • \(target\) 也可以存在,如:\(leftmost(4)+1 = 3\)

求前任(predecessor)\(leftmost(target) - 1\)

  • \(leftmost(3) - 1 = 1\),前任 \(a_1 = 2\)
  • \(leftmost(4) - 1 = 1\),前任 \(a_1 = 2\)

求后任(successor)\(rightmost(target)+1\)

  • \(rightmost(5) + 1 = 5\),后任 \(a_5 = 7\)
  • \(rightmost(4) + 1 = 5\),后任 \(a_5 = 7\)

求最近邻居

  • 前任和后任距离更近者

6. 习题

1) 时间复杂度估算

用函数 \(f(n)\) 表示算法效率与数据规模的关系,假设每次解决问题需要 1 微秒(\(10^{-6}\) 秒),进行估算:

  1. 如果 \(f(n) = n^2\) 那么 1 秒能解决多少次问题?1 天呢?
  2. 如果 \(f(n) = log_2(n)\) 那么 1 秒能解决多少次问题?1 天呢?
  3. 如果 \(f(n) = n!\) 那么 1 秒能解决多少次问题?1 天呢?

参考解答

  1. 1秒 \(\sqrt{10^6} = 1000\) 次,1 天 \(\sqrt{10^6 * 3600 * 24} \approx 293938\)

  2. 1秒 \(2^{1,000,000}\) 次,一天 \(2^{86,400,000,000}\)

  3. 推算如下

    • \(10! = 3,628,800\) 1秒能解决 \(1,000,000\) 次,因此次数为 9 次
    • \(14!=87,178,291,200\),一天能解决 \(86,400,000,000\) 次,因此次数为 13 次

2) 耗时估算

一台机器对200个单词进行排序花了200秒(使用冒泡排序),那么花费800秒,大概可以对多少个单词进行排序

a. 400

b. 600

c. 800

d. 1600

答案

  • a

解释

  • 冒泡排序时间复杂度是 \(O(N^2)\)
  • 时间增长 4 倍,而因此能处理的数据量是原来的 \(\sqrt{4} = 2\)

3) E01. 二分查找-Leetcode 704

要点:减而治之,可以用递归或非递归实现

给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标,否则返回 -1

例如

输入: nums = [-1,0,3,5,9,12], target = 9
输出: 4
解释: 9 出现在 nums 中并且下标为 4输入: nums = [-1,0,3,5,9,12], target = 2
输出: -1
解释: 2 不存在 nums 中因此返回 -1  

参考答案:略,可以用讲过的任意一种二分求解

image-20240903083002-16fh3tg

4) E02. 搜索插入位置-Leetcode 35

要点:理解谁代表插入位置

给定一个排序数组和一个目标值

  • 在数组中找到目标值,并返回其索引
  • 如果目标值不存在于数组中,返回它将会被按顺序插入的位置

例如

输入: nums = [1,3,5,6], target = 5
输出: 2输入: nums = [1,3,5,6], target = 2
输出: 1输入: nums = [1,3,5,6], target = 7
输出: 4

参考答案1:用二分查找基础版代码改写,基础版中,找到返回 m,没找到 i 代表插入点,因此有

public int searchInsert(int[] a, int target) {int i = 0, j = a.length - 1;while (i <= j) {int m = (i + j) >>> 1;if (target < a[m]) {j = m - 1;} else if (a[m] < target) {i = m + 1;} else {return m;}}return i; // 原始 return -1
}

参考答案2:用二分查找平衡版改写,平衡版中

  • 如果 target == a[i] 返回 i 表示找到
  • 如果 target < a[i],例如 target = 2,a[i] = 3,这时就应该在 i 位置插入 2
  • 如果 a[i] < target,例如 a[i] = 3,target = 4,这时就应该在 i+1 位置插入 4
public static int searchInsert(int[] a, int target) {int i = 0, j = a.length;while (1 < j - i) {int m = (i + j) >>> 1;if (target < a[m]) {j = m;} else {i = m;}}return (target <= a[i]) ? i : i + 1;// 原始 (target == a[i]) ? i : -1;
}

参考答案3:用 leftmost 版本解,返回值即为插入位置(并能处理元素重复的情况)

public int searchInsert(int[] a, int target) {int i = 0, j = a.length - 1;while(i <= j) {int m = (i + j) >>> 1;if(target <= a[m]) {j = m - 1;} else {i = m + 1;} }return i;
}

5) E03. 搜索开始结束位置-Leetcode 34

给你一个按照非递减顺序排列的整数数组 nums,和一个目标值 target。请你找出给定目标值在数组中的开始位置和结束位置。

如果数组中不存在目标值 target,返回 [-1, -1]。

你必须设计并实现时间复杂度为 O(log n) 的算法解决此问题

例如

输入:nums = [5,7,7,8,8,10], target = 8
输出:[3,4]输入:nums = [5,7,7,8,8,10], target = 6
输出:[-1,-1]输入:nums = [], target = 0
输出:[-1,-1]

参考答案

public static int left(int[] a, int target) {int i = 0, j = a.length - 1;int candidate = -1;while (i <= j) {int m = (i + j) >>> 1;if (target < a[m]) {j = m - 1;} else if (a[m] < target) {i = m + 1;} else {candidate = m;j = m - 1;}}return candidate;
}public static int right(int[] a, int target) {int i = 0, j = a.length - 1;int candidate = -1;while (i <= j) {int m = (i + j) >>> 1;if (target < a[m]) {j = m - 1;} else if (a[m] < target) {i = m + 1;} else {candidate = m;i = m + 1;}}return candidate;
}public static int[] searchRange(int[] nums, int target) {int x = left(nums, target);if(x == -1) {return new int[] {-1, -1};} else {return new int[] {x, right(nums, target)};}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/791455.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

工地安全帽视频智能识别监测系统

工地安全帽视频智能识别监测系统根据安装在现场施工工地的各处各品牌的监控摄像头,组建智能监管和预警系统,工地安全帽视频智能识别监测系统开展面部识别、个人行为识别和安全帽识别,合理填补智能现场监管中传统式方法和技术的缺点,真真正正完成预警信息、正常的检验、规范…

探索 PCI 转 PMC 载板转接卡:连接不同接口的桥梁

在计算机硬件领域,各种接口和总线标准不断演进,以满足日益增长的性能和功能需求。在这个过程中,不同接口之间的转换设备应运而生,其中 PCI 转 PMC 载板转接卡就是一种重要的连接解决方案。 PCI 转 PMC 载板转接卡,顾名思义,是一种用于将计算机的 PCI(Peripheral Compone…

keycloak~scope客户端模板的使用

scope为何物? scope在oauth2中表示授权的范围,另外也可以理解为,根据认证时scope的参数,在构建jwt时,返回更多的信息;比如在keycloak中,你的可选scope(optional scope)中添加了address这个模板,当你通过/auth/realms/{realmId}/protocol/openid-connect/token进行认证时…

安全帽佩戴检测识别系统

安全帽佩戴检测识别系统一直是当场生产制造中十分关键的构成部分。仅有保证员工的安全性,大家能够保证公司的权益。安全帽佩戴检测识别系统作为一种主要的检测施工人员是否佩戴安全帽的智能化方式,一直是帮助公司监督积极倡导规定职工佩戴安全帽的重要手段之一,但因为不戴安…

js转码方法

项目开发传参时会遇到用汉字或者特殊字符当做参数值的情况,这时需要转码一下才能正常传参,不然会因为不支持汉字而报错 转码方法共有三种: escape() encodeURI() encodeURIComponent()前两种不过多讨论,因为encodeURIComponent()能够正确处理更多的特殊字符,并确保整个 UR…

反射内存卡的使用场景

反射内存卡使用场景 航空航天与国防 1.飞行模拟器:用于实时模拟飞行器的各种状态和参数,确保多个模拟器节点之间的数据同步。 2.武器系统:在分布式武器控制和指挥系统中实现快速数据共享,提高响应速度。 3.卫星控制系统:保障卫星各子系统之间的数据实时交换。 工业自动化 …

两句话讲清楚离线安装docker镜像

背景:银河麒麟、离线环境,装吧,一装一个不吱声。两句话讲清楚离线安装docker镜像 目录两句话讲清楚离线安装docker镜像写在前面解决方案 写在前面背景:银河麒麟、离线环境,装吧,一装一个不吱声。准备:首先,你要有个docker,安装好了才能搞镜像是不是,参考我的上一篇:…

WPF性能优化之UI虚拟化

@目录前言一、VirtualizingStackPanel1.1 虚拟化功能介绍1、在Window中添加一个ListBox控件。2、在设计视图中用鼠标选中ListBox控件并右健依次单击“编辑其他模板”-“编辑项的布局模板”-“编辑副本”。3、查看生成的模板代码。1.2 虚拟化参数介绍二、CustomVirtualizingPa…

告别数据孤岛:数据增量同步方案助力企业数据整合!

为了更高效、更经济地管理和传输数据,特别是在数据量大、更新频繁的环境中,企业需要通过数据增量同步方案来解决。数据增量同步方案是一种数据同步技术,只同步自上次同步以来发生变化的部分数据,而不是同步整个数据集。具有以下作用: 1.减少数据传输量:在文件同步过程中,…

Echarts + 低代码 :可视化如何赋能企业的创新之路?

前言 数据驱动已经成为企业决策和业务优化的关键所在,在数字化时代,高效的数据分析与可视化呈现是实现智能决策的关键。利用低代码开发平台,企业可以快速构建满足业务需求的应用系统,实现对各类数据源的便捷接入。结合 Echarts 等可视化工具,复杂的数据信息能够以直观、富…

RAG知识库之知识库图谱应用

上篇文章介绍了使用大模型构建生成知识图谱,其实也可不用大模型用其他方式构建生成知识图谱,但RAG要结合知识图谱使用关键还是怎么把图谱的内容查询出来;简单来说可以先查出Chunk集在关联查出每个Chunk所关联的实体Entity再查询出实体之间的的关系集;这里说的RAG结合知识图…