LLM大模型基础知识学习总结

大家好,我是Edison。

在这个已经被大模型包围的时代,不了解一点大模型的基础知识和相关概念,可能出去聊天都接不上话。刚好近期我也一直在用GPT和GitHub Copilot,也刚好对这些基础知识很感兴趣,于是学习了一下,做了如下的整理总结,分享与你!

一句话描述GPT

GPT:Generative Pre-Training Transformer,即三个关键词:生成式 预训练 变换模型

GPT模型通过在大量数据上学习到的语言模式,预测下一个字(token),生成自然语言文本。

大模型的6大关键技术

大模型

类似于人类的大脑,通过思考和规划来完成任务;

Prompt(提示词工程)

类似于人类的沟通,上级通过布置任务来让下级完成一项任务;

RAG(检索增强生成)

类似于人类想要暂时完成一件任务,但是这件任务暂时不会做。例如马上要大学期末考试了,我们需要临时抱佛脚突击一周,以求得考试及格分数,但是考完试以后,这些知识就忘得一干二净了。或者说类似于大学期末的开卷考试,反正知识点都在书里,你平时都没学过,得先找一找,找到了就把相关答案写在试卷上,考完了还是忘得一干二净,但是你的目标达到了:考试及格60分万岁!

Fine-tunig(微调)

类似于人类想要彻底学会一个技能,例如想要学会大模型的技术,我们需要通过系统的培训以及通过实战去真正的掌握大模型技术。

Function Calling(函数调用)

类似于人类使用工具完成一件任务,例如想要查询成都的天气情况,我们要么直接打开天气预报的App,要么直接在百度上搜索,总之是通过工具来完成这件事。

Agent

类似于人类通过沟通、分工和协作来完成一件复杂的任务,通常会结合使用到上面提到的五个技术来完成任务,而且大模型时代的Agent也不是单兵作战而是多个Agent之间合作来完成任务。例如想要开发一个客服项目,需要产品经理Agent、架构师Agent、开发者Agent、测试者Agent、运维Agent 和 项目管理Agent 像人类一样去沟通协作,最后才能把这个项目自动地完成。

知识问答的3种主要方式

大模型直答

最常见的方式:直接向LLM提问,LLM给出回答。

大模型微调(Fine-Tuning)

首先,将企业私有知识加给通用大模型进行微调形成私有大模型;然后,再将问题给到私有大模型进行回答。

大模型RAG(检索增强生成)

首先,对企业的知识库进行检索得到相关的知识片段;然后,将知识片段和原问题组合成新的提示词发给通用大模型得到回答;

3种方式的效果对比:

总结:在企业落地知识问答库时,如果为了追求成本和回答准确度,推荐使用RAG方案

AI Agent到底是什么?

在产品层面:AI Agent是AGI时代新的应用形态

这其实是应用形态的演进:在AGI时代之前是移动互联网时代,它的产品形态是APP。

在进入AGI时代后,产品形态变为了AI Agent。未来现有的部分高级程序员写的应用就不再会是App,而是AI Agent了!

在技术层面:面向过程架构 → 面向目标架构 的转变(软件架构的范式迁移)

比如,在App时代写一个用户系统,需要把整个用户从注册到登录再到回放,一步一步地把整个流程结合if-else把它开发出来。这个生成的过程我们叫做面向过程的架构,需要预定义指令、逻辑和规则。

但是,在AI Agent时代,很多情况下不需要把这些指令一个一个地指出来,只需要一句话就行了,比如说提供一个prompt“请帮我完成一个用户系统,它包含用户注册、登录、查询等功能”,然后大模型就会帮你去完成。这个生成的过程我们叫做面向目标的架构,具有目标导向和动态规划的特点,由AI Agent自主生成。

大模型和Agent有啥区别?

Agent会在大模型的推理结果基础之上,使用一些工具(如调用API)完成某个特定的任务,这个技术也被称为Function Calling(函数调用)。

当下大模型的参数量提升AI Agent的理解力和泛化能力,使其能够更好地处理多种任务和上下文信息,这增强了AI代理的自然语言处理能力,从而提供更加个性化、连贯的交互体验,是当下Agent的构建关键!

总结:大模型时代下的 AI Agent = LLM × (规划+记忆+工具+行动)

AI Agent的应用场景通常与特定任务或环境紧密相关。例如,在智能家居系统中,AI Agent可以根据用户的生活习惯和偏好自动调节家庭设备的运行状态。在游戏中,AI Agent能够提供具有挑战性的对手或复杂的游戏环境动态。

Agent架构的核心流程

Agent架构有三个重要的模块:规划模块(Planning)、执行模块(Action) 和 观察模块(Observation),如下图所示:

举个例子,假设我们有一个prompt“请用python画一个圆心”。

首先,在规划模块,Agent会将这个需求拆解为三个子项:写Python代码、调用IPython解释器、调用Docker运行环境;

其次,在执行模块,Agent会分别执行拆解的事项,也就是去调用各种工具;

最后,在观察模块,Agent会对每一步的执行结果做观测,如果check完毕没问题,就给到用户最终的答案。如果觉得有问题,比如执行的过程中出现了Timeout之类的错误,就会做一些Retry的操作。如果Retry次数超过了最大重试次数,这时候就可能会把这个进程Kill掉,然后重新进入规划模块重新规划。

在这三个模块或者说能力中,最重要的当属规划模块!

大模型和程序员的关系

目前ChatGPT对程序员到底有哪些实质性的帮助?

第一点:Code Review

ChatGPT能够理解代码,并针对代码给出针对性的建议和优化方案;

第二点:写测试用例、单元测试、集成测试等,这些ChatGPT都很擅长!

第三点:对线上问题的定位和分析

线上问题的各种疑难杂症,ChatGPT都能胜任!

第四点:SQL的翻译

实现两种数据库的SQL语言转换,比如将Oracle的SQL脚本转换成MySQL的SQL脚本。

有了AI编程,还需要程序员吗?

第一,在冯诺依曼架构体系下,程序需要的是确定性计算

第二,由于大模型本身的概率性,目前大模型生成的代码还具备一定的随意性和不确定性

第三,目前大模型更擅长的是一些抽象层次比较低的工作,比如一段代码或一个算法的实现,写一个单元测试等等。而一些抽象层次比较高的工作,比如需求分析、架构设计、领域设计、架构选型等,这些工作反而是大模型不擅长的,而这些工作是比较具备有竞争力的,这恰恰是一些高级程序员以及系统架构师的价值所在。

应用实践AIGC有几层境界?

第一层境界:简单对话;

通过ctrl-c/v出结果,人人都会。

第二层境界:系统掌握Prompt Engineering;

通过系统掌握好提示词工程,真正赋能工作提效。

目前,Edison还处于这一层。

第三层境界:将AIGC融入业务流程,指挥AIGC完成复杂的任务;

通过掌握AIGC的技能,并完成业务领域知识的深入结合。

第四层境界:拥有自己的大模型;

熟悉大模型的架构原理,通过开源大模型微调,最好能够拥有一定的行业数据壁垒。

第五层境界:参与设计训练大模型;

比如从事ChatGPT等研发工作。

如何掌握AI大模型开发技能?

第一步:掌握开发AGI时代新应用程序的技能;

比如:大模型应用内核、LangChain开发框架、向量数据库等;

第二步:搞定开发企业级AI Agent的应用技能;

比如:AI Agent、大模型缓存、算力等;

第三步:驾驭开发企业级专有大模型的技能;

比如:RAG、微调等;

第四步:深入应用大模型技术成为开发大师;

比如:大模型预训练、LLMOps等;

小结

大模型应用开发学习实践之路漫漫,我们IT开发者也会逐渐从Application的开发转向Agent的开发的范式的转变,一起加油吧!

参考资料

玄姐聊AGI:https://space.bilibili.com/412720389 (推荐观看玄姐的视频)

甲子光年,《2024年AI Agent行业报告》

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/791960.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

借助表格技术提升智能审计云平台应用体验

背景说明: 2009年,立信加入全球第五大国际会计网络——BDO国际。BDO 全球各地成员所均使用统一的审计方式,在完全遵守国际审计准则的原则同时,也会应不同地区要求提供附加指引,确保在全球提供一致的服务水平。如今,立信的审计过程及档案记录均已实现电子化。然而,审计工…

芯片电源入口VCC串联的小电阻

芯片电源入口VCC串联的小电阻 我们经常会看到,在一些芯片的电源入口处不是直接接入直流电源,而是在VCC入口串联一个几十欧姆的小电阻,这个电阻有什么作用呢? 示意图如下具体分析: 1.假设没有这个电阻R1,当芯片击穿后,芯片内部的VCC引脚跟GND短路,VCC引脚又直接跟电源15V…

高端制造业供应商伙伴管理的痛点是什么?怎么解决?

高端制造业供应商伙伴管理一般都会选择使用供应商管理系统(SRM, Supplier Relationship Management)来改善企业与供应链上游供应商的关系,提高采购效率,降低采购成本,并增强供应链的透明度和合规性。而SRM系统在一定程度上可以满足供应商伙伴管理的基础诉求,如供应商信息…

备受500强企业青睐的安全数据交换系统,到底有什么优势?

网络隔离成为常见的安全手段 网络隔离技术已成为许多企业进行网络安全建设的重要手段之一,党政单位、金融机构、半导体企业、以及能源电力、医疗、生物制药等等行业及领域的企业都会选择方式不一的网络隔离技术来保护自己的网络安全,规避互联网中的网络侵害。 网络隔离为企业…

DAG 求u到v路径数

DAG 求u到v的路径数先拓扑排序求出每个点的顺序,再对每个起点 \(s\) 做 dp,遍历拓扑序的点,对 \(s\) 能到达的点做 dp 统计路径数,如果终点 \(t\) 拓扑序在 \(s\) 之前就说明没有路径。 #include<bits/stdc++.h> using namespace std; #define ll long long #define …

晶振并联的1M电阻

晶振并联的1M电阻 与晶振并联的1M电阻是什么用?为何有的有用,有的没有用?应该如何选择? 在实际的产品设计时,针对晶振部分的电路,你会发现会有下面2种电路,图1电路中,没有1M的电阻;图2电路中,晶振会并联一个1M的电阻。晶振电路的相关问题1M电阻具体是什么作用呢?为什…

利用分布式锁在ASP.NET Core中实现防抖

前言 在 Web 应用开发过程中,防抖(Debounce) 是确保同一操作在短时间内不会被重复触发的一种有效手段。常见的场景包括防止用户在短时间内重复提交表单,或者避免多次点击按钮导致后台服务执行多次相同的操作。无论在单机环境中,还是在分布式系统中都有一些场景需要使用它。…

智慧水利河湖AI智能视频分析识别系统

智慧水利河湖AI智能视频分析识别系统运用视频结构型技术性,根据图像处理与分析,创建图像与图像叙述两者之间的投射关联,掌握视频图像中的內容,运用于水利管理方法情景。智慧水利河湖AI智能视频分析识别系统运用视频智能搜索分析,根据对非结构性原创设计视频数据信息的智能…

视频监控系统智能识别分析

视频监控系统智能识别分析可以合理处理因为监控点太多,工作人员没办法监控考虑到全部监控情景。传统监控是“处于被动监控”通常只有在“事件”发生后根据启用视频回看查找线索。视频监控系统智能识别分析主要特点是应用机器视觉,在几乎不用人工干涉的情形下,根据海康或者大…

加油站AI智能视频监控分析系统

加油站AI智能视频监控分析系统可以根据视频总流量分析技术,使优化算法实体模型替代人的眼睛,即时鉴别加油站内部的工作过程中的安全规范、员工行为准则等问题。加油站AI智能视频监控分析系统优化算法实体模型可以精确捕获违规操作,全年度24个小时无间断,各种不良行为并发送…

智能视频分析ai图像精准智能识别

智能视频分析ai图像精准智能识别包含图像解决、数字图像处理、行为识别、状态识别 、视频帧全自动监控分析,体现了智能视频分析ai图像精准智能识别的工作能力。根据智能视频分析ai图像精准智能识别,智能视频内嵌式识别专用工具可以分析监控视频监管下的图像,并将合理信息内容…

ai行为识别技术监控

ai行为识别技术监控系统软件是一种以行为识别技术为关键技术的深度学习算法,根据人工智能化神经元网络,构造大家的主要模块架构,ai行为识别技术监控 依据我们的轨迹测算各种各样健身运动行为,根据视频转码技术、流媒体播放技术、数字矩阵技术、云技术等,ai行为识别技术监控…