如何更好地使用 ArkUI 的 Image 组件?

如何使用好 ArkUI 的 Image 组件?

开发者经常需要在应用中显示一些图片,例如:按钮中的logo、网络图片、本地图片等。在应用中显示图片需要使用 Image 组件实现,Image支持多种图片格式,包括png、jpg、bmp、svg和gif,具体用法请参考Image组件。

ArkUI 的 Image组件类比SwiftUI中的Image,也就是UIKit中的UIImageView。

本文主要对 Image 如何展示图像做一些解读,然后对 Image组件一些特殊属性做分析,进而帮助开发者理解设置前后的效果,以及我们会尝试寻找何时使用这个属性最佳,进而给开发者提出参考方案。

一、整理潜在的优化点:

Image组件将图片显示到屏幕上分为三步:加载、解码、渲染:

在这里插入图片描述

一般情况下,我们直接调用组件操作的是加载这个步骤。因此,从渲染过程分析,考虑以下几个方面可能可以提升性能。

· 异步下载图片。

一般情况下,图片加载流程会异步进行,以避免阻塞主线程,影响UI交互。但是特定情况下,图片刷新时会出现闪烁,这时可以使用syncLoad属性,使图片同步加载,从而避免出现闪烁。

· 将image解码放到子线程。

以Image组件为例。当其显示在屏幕上时,需要Image作为数据源。 Image持有的数据是没有解码的压缩数据,能节省较多的内存和加快存储。 当image被赋值给Image时,图像数据会被解码,变成RGB的颜色数据。 解码是一个计算量较大的任务,且需要CPU来执行。

解码出来的图片体积与图片的宽高有关,与图片原来的体积无关。

图片解码是耗时操作,如果图片非常大,建议放到子线程解码。

在这里插入图片描述

图片解码可能会产生什么问题?

在上下滑动展示图片的过程中,我们会在lazyforeach的方法加载Image图片,相当于在主线程同时进行IO操作、解码等操作。这会造成内存迅速增长和CPU负载瞬间提升。 并且内存的迅速增加会触发系统的内存回收机制,尝试回收其他后台进程的内存,增加CPU的工作量。

如果系统无法提供足够的内存,则会先结束后台app进程,同时造成UI卡顿。

· 使用合适尺寸的图片,减少为了适配屏幕产生的bitmap计算。

使用图片资源管理工具,存储不同分辨率的图片,在不同分辨率的设备使用最适合的尺寸。如果图片是网络获取,可以通过传参的类型告诉服务端,服务端根据设备类型返回最合适尺寸的图片。

· 使用缓存 (内存缓存和磁盘缓存)

详细分析见下文《图片缓存》章节。

· 直接存储压缩后的图片,避免下次从使用缓存的时候再次解压缩。

· 减少内存级别的拷贝。(采用字节对齐)

在图像渲染时是通过一块一块渲染,因此数据是一块块地取,如果一块连续的内存数据里结尾的数据不是图像的内容,是内存里其他的数据,会影响读取效率。
块的大小和CPU cache有关,64位系统按64byte作为一块数据去读取和渲染,让图像数据对齐64byte就可以避免图形管理器再拷贝一份数据进行修补。

· 图片预下载。

提前将需要的图片下载到本地,并在CPU空闲的时候解压缩。

二、对 syncLoad 加载原理分析

我们发现聊天列表头像图片很小,加载很快,根据官方文档指示:在加载图片的耗时比较短的时候,通过异步加载的效果会大打折扣,建议配置 Image.syncLoad属性。

Image($r('app.media.icon')).syncLoad(true)

这个修改虽然很简单,按字面意思就是设置 同步/异步 加载,但我们想弄清楚的是什么时候使用这个特性才是合理的?

为了彻底搞明白,我们尝试阅读实现代码,从代码上看设置了这个值对组件有什么影响。

分析结果

结论先行,通过下面的分析我们可以得知,设置.syncLoad(true)这个值,产生的影响是:创建图片时是否创建一个异步任务,是否使用互斥锁。

而我们知道,创建异步任务和使用互斥锁也是有开销的,进而会影响内存和性能。

在这里插入图片描述

分析过程

· 由于我们使用的是Image组件,Image组件属于ArkUI,所以我们找到ArkUI的代码仓下载代码:https://gitee.com/openharmony/arkui_ace_engine

· 打开下载后的工程,找到对应Image的目录:

在这里插入图片描述

设置初始值

· 查看 image_pattern.h中属性的定义,其中省略了无关的代码:

namespace OHOS::Ace::NG {class ACE_EXPORT ImagePattern : public Pattern, public SelectionHost {DECLARE_ACE_TYPE(ImagePattern, Pattern, SelectionHost);public:...private:...bool syncLoad_ = false;bool isShow_ = true;ACE_DISALLOW_COPY_AND_MOVE(ImagePattern);
};} // namespace OHOS::Ace::NG#endif // FOUNDATION_ACE_FRAMEWORKS_CORE_COMPONENTS_NG_PATTERNS_IMAGE_IMAGE_PATTERN_H

通过 bool syncLoad_ = false; 我们知道了syncLoad的默认属性是false,如果不设置,图片加载就是异步的。

LoadImageDataIfNeed()

· 查看 image_pattern.cpp中的实现,其中省略了无关的代码:

void ImagePattern::ToJsonValue(std::unique_ptr<JsonValue>& json) const
{...json->Put("syncLoad", syncLoad_ ? "true" : "false");...
}

ToJsonValue这个方法通过将sync属性转换成json值,和我们目的无关,不需要细看。

找到另一个实现方法 LoadImageDataIfNeed 和图片加载强相关,我们粗略看一下整段代码:

void ImagePattern::LoadImageDataIfNeed()
{// 获得图片布局属性auto imageLayoutProperty = GetLayoutProperty<ImageLayoutProperty>();CHECK_NULL_VOID(imageLayoutProperty);// 获得图片绘制属性auto imageRenderProperty = GetPaintProperty<ImageRenderProperty>();CHECK_NULL_VOID(imageRenderProperty);auto src = imageLayoutProperty->GetImageSourceInfo().value_or(ImageSourceInfo(""));UpdateInternalResource(src);if (!loadingCtx_ || loadingCtx_->GetSourceInfo() != src) {LoadNotifier loadNotifier(CreateDataReadyCallback(), CreateLoadSuccessCallback(), CreateLoadFailCallback());loadingCtx_ = AceType::MakeRefPtr<ImageLoadingContext>(src, std::move(loadNotifier), syncLoad_);LOGI("start loading image %{public}s", src.ToString().c_str());loadingCtx_->LoadImageData();}if (loadingCtx_->NeedAlt() && imageLayoutProperty->GetAlt()) {auto altImageSourceInfo = imageLayoutProperty->GetAlt().value_or(ImageSourceInfo(""));LoadNotifier altLoadNotifier(CreateDataReadyCallbackForAlt(), CreateLoadSuccessCallbackForAlt(), nullptr);if (!altLoadingCtx_ || altLoadingCtx_->GetSourceInfo() != altImageSourceInfo ||(altLoadingCtx_ && altImageSourceInfo.IsSvg())) {altLoadingCtx_ = AceType::MakeRefPtr<ImageLoadingContext>(altImageSourceInfo, std::move(altLoadNotifier));altLoadingCtx_->LoadImageData();}}
}

其中重点部分:如果 loadingCtx_ 不存在 或者 loadingCtx_ 的图片地址和当前不一致时就会创建一个 RefPtr

	// 判断条件:如果 loadingCtx_ 不存在 或者 loadingCtx_ 的图片地址和当前不一致时if (!loadingCtx_ || loadingCtx_->GetSourceInfo() != src) {//  创建一个 loadingCtx_, syncLoad_ 是其中一个属性loadingCtx_ = AceType::MakeRefPtr<ImageLoadingContext>(src, std::move(loadNotifier), syncLoad_);loadingCtx_->LoadImageData();}

RefPtr

那么 loadingCtx_ 是一个什么东西呢?通过查看定义文件 image_pattern.h发现:

    RefPtr<ImageLoadingContext> loadingCtx_;

loadingCtx_ 是一个 RefPtr 类型的指针。

我们也可以在源码memery 下的 referenced.h 中找到 RefPtr 的定义,由于对我们分析图片加载影响不大,简单看一下,可以得知:

  1. RefPtr 使用引用计数管理实例
  2. 由于在一些场景需要隐式转换,所以在构造函数中移除了 explicit(explicit指定构造函数或转换函数 (C++11起)为显式, 即它不能用于隐式转换和复制初始化)
template<class T>
class RefPtr final {public:...private:...explicit RefPtr(T* rawPtr, bool forceIncRef = true) : rawPtr_(rawPtr){if (rawPtr_ != nullptr && forceIncRef) {// Increase strong reference count for holding instance.rawPtr_->IncRefCount();}}...
};

AceType::MakeRefPtr

再回到之前的调用代码 loadingCtx_ = AceType::MakeRefPtr<ImageLoadingContext>(src, std::move(loadNotifier), syncLoad_);,主要关注下使用到的 MakeRefPtr 函数,可以得知:

  1. Referenced::MakeRefPtr 是用于创建新实例的,而这个创建的新实例是继承于 Referenced的。
  2. 使用 RefPtr 管理指针。
template<class T, class... Args>
static RefPtr<T> MakeRefPtr(Args&&... args)
{return Claim(new T(std::forward<Args>(args)...));
}

我们发现 MakeRefPtr 这个函数核心是调用 Claim函数,所以我们需要找到 Claim函数:

template<class T>
static RefPtr<T> Claim(T* rawPtr)
{if (MemoryMonitor::IsEnable()) {MemoryMonitor::GetInstance().Update(rawPtr, static_cast<Referenced*>(rawPtr));}return RefPtr<T>(rawPtr);
}

通过代码可以得知,Claim通过内存监控管理器用 原始指针构建 RefPtr,而 syncLoad_ 是作为一个 std::forward<Args>(args)...)的一个参数被管理起来。

ImageLoadingContext()

· 知道了 syncLoad_ 是怎么被管理的之后,我们再看 syncLoad_ 怎么用就更容易理解了。
通过之前的指针类型定义 RefPtr<ImageLoadingContext> loadingCtx_;,我们可以找到 ImageLoadingContext 这个类,在cpp实现中找到了这个方法 OnDataLoading()

void ImageLoadingContext::OnDataLoading()
{if (auto obj = ImageProvider::QueryImageObjectFromCache(src_); obj) {DataReadyCallback(obj);return;}ImageProvider::CreateImageObject(src_, WeakClaim(this), syncLoad_);
}

可以发现是CreateImageObject() 这个方法创建了图片对象,并且使用了 syncLoad_ 这个参数作为创建时的初始值参数。所以我们再次在 image_provider.cpp这个文件中找到 CreateImageObject() 这个方法:

这个方法是重点,所以完整展示代码,并添加一些注释

CreateImageObject()

void ImageProvider::CreateImageObject(const ImageSourceInfo& src, const WeakPtr<ImageLoadingContext>& ctx, bool sync)
{if (!RegisterTask(src.GetKey(), ctx)) {// 如果任务已经在跑了,直接返回return;}if (sync) {// 如果是同步的,直接调用helper类创建CreateImageObjHelper(src, true);} else {// 如果是异步的,使用了一个互斥锁std::scoped_lock<std::mutex> lock(taskMtx_);// 创建一个可取消的任务CancelableCallback<void()> task;// 以src作为唯一键值绑定任务task.Reset([src] { ImageProvider::CreateImageObjHelper(src); });tasks_[src.GetKey()].bgTask_ = task;// 放到后台去执行任务ImageUtils::PostToBg(task);}
}

image_utils.cpp

void ImageUtils::PostToBg(std::function<void()>&& task)
{CHECK_NULL_VOID(task);ImageUtils::PostTask(std::move(task), TaskExecutor::TaskType::BACKGROUND, "BACKGROUND");
}
void ImageUtils::PostTask(std::function<void()>&& task, TaskExecutor::TaskType taskType, const char* taskTypeName)
{auto taskExecutor = Container::CurrentTaskExecutor();if (!taskExecutor) {LOGE("taskExecutor is null when try post task to %{public}s", taskTypeName);return;}taskExecutor->PostTask([task, id = Container::CurrentId()] {ContainerScope scope(id);CHECK_NULL_VOID(task);task();},taskType);
}
/*** Post a task to the specified thread.** @param task Task which need execution.* @param type FrontendType of task, used to specify the thread.* @return Returns 'true' whether task has been post successfully.*/
bool PostTask(Task&& task, TaskType type) const
{return PostDelayedTask(std::move(task), type, 0);
}

mock_image_utils.cpp

void ImageUtils::PostToBg(std::function<void()>&& task)
{// mock bg thread poolif (g_threads.size() > MAX_THREADS) {return;}g_threads.emplace_back(std::thread(task));
}

emplace_back() 函数在原理上比 push_back() 有了一定的改进,包括在内存优化方面和运行效率方面。内存优化主要体现在使用了就地构造(直接在容器内构造对象,不用拷贝一个复制品再使用)+强制类型转换的方法来实现,在运行效率方面,由于省去了拷贝构造过程,因此也有一定的提升。

~ImageLoadingContext()

有创建就有销毁,同样我们在析构函数中也找到响应证据,如果是异步的,就会在析构函数中调用CancelTask 取消任务:

ImageLoadingContext::~ImageLoadingContext()
{// 取消后台任务if (!syncLoad_) {auto state = stateManager_->GetCurrentState();if (state == ImageLoadingState::DATA_LOADING) {// 取消 CreateImgObj 任务ImageProvider::CancelTask(src_.GetKey(), WeakClaim(this));} else if (state == ImageLoadingState::MAKE_CANVAS_IMAGE) {// 取消 MakeCanvasImage 任务if (InstanceOf<StaticImageObject>(imageObj_)) {ImageProvider::CancelTask(canvasKey_, WeakClaim(this));}}}
}

总结:综上分析,我们知道了设置了.syncLoad(true)这个值后,创建图片时就不会创建一个异步任务,而我们知道,创建异步任务和互斥锁也是有开销的,会影响内存和性能,所以是否使用这个属性取决于 空间和时间 的取舍,关键在于这个阈值是在哪里。为了找出多大的图片使用 syncLoad 更好,我们做了如下测试:

对比测试

todo。。。

三、objectFit、autoResize 属性对 Image 组件性能的影响

todo

四、图片缓存

ArkUI的图片缓存策略以及我们建议的图片缓存策略:
todo

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/80595.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SVN 项目管理笔记

SVN 项目管理笔记 主要是介绍 SVN 管理项目的常用操作&#xff0c;方便以后查阅&#xff01;&#xff01;&#xff01; 一、本地项目提交到SVN流程 在SVN仓库下创建和项目名同样的文件夹目录&#xff1b;选中本地项目文件&#xff0c;选择SVN->checkout,第一个是远程仓库项…

数据驱动工作效率提升的5个层次—以PreMaint设备数字化平台为例

在现代工业领域&#xff0c;数据分析已成为提升工作效率和优化生产的不可或缺的工具。从描述性分析到规范性分析&#xff0c;数据分析逐步揭示了设备运行和维护的深层信息&#xff0c;帮助企业更明智地做出决策。本文将以PreMaint设备数字化平台为例&#xff0c;探讨工业数据驱…

Java接收前端请求体方式

&#x1f497;wei_shuo的个人主页 &#x1f4ab;wei_shuo的学习社区 &#x1f310;Hello World &#xff01; 文章目录 RequestBodyPathVariableRequestParamValidated方法参数校验方法返回值校验 RequestHeaderHttpServletRequest ## Java接收前端请求体的方式 请求体&#xf…

手写Vue3响应式数据原理

Vue3响应式数据 前言一、proxy是什么&#xff1f;1.1 proxy基本使用 二、实现最基本的reactive函数三、实现基本响应式系统四、完善基本响应式系统4.1 执行每一个副作用函数4.2 实现依赖收集4.2.1 基本实现 4.3 改进桶结构 五、相关面试题1.Object.defineProperty 和 Proxy 的区…

WPS office 最新未公开 0Day漏洞警示

一、事件描述 近日&#xff0c;网传监测发现WPS Office for Windows版本 存在0day漏洞&#xff0c;攻击者可以利用该0day漏洞在受害者主机上执行任意恶意文件&#xff0c;高危级别&#xff0c;官方尚未对此发布修复漏洞&#xff0c;目前建议只能临时弃用wps或者不要点开未知文件…

设计模式——组合模式

什么是组合模式 组合模式(Composite Pattern)&#xff1a;组合多个对象形成树形结构以表示具有“整体—部分”关系的层次结构。组合模式对单个对象&#xff08;即叶子对象&#xff09;和组合对象&#xff08;即容器对象&#xff09;的使用具有一致性&#xff0c;组合模式又可以…

10*1000【2】

知识: -----------金融科技背后的技术---------------- -------------三个数字化趋势 1.数据爆炸&#xff1a;internet of everything&#xff08;iot&#xff09;&#xff1b;实时贡献数据&#xff1b;公有云服务->提供了灵活的计算和存储。 2.由计算能力驱动的&#x…

无涯教程-PHP - Filtered反序列化

PHP 7引入了Filtered unserialize()函数&#xff0c;以在对不受信任的数据上的对象进行反序列化时提供更好的安全性。 <?phpclass MyClass1 { public $obj1prop; }class MyClass2 {public $obj2prop;}$obj1new MyClass1();$obj1->obj1prop1;$obj2new MyClass2();$obj…

【大模型AIGC系列课程 2-2】大语言模型的“第二大脑”

1. 大型语言模型的不足之处 很多人使用OpenAI提供的GPT系列模型时都反馈效果不佳。其中一个主要问题是它无法回答一些简单的问题。 ● 可控性:当我们用中文问AI一些关于事实的问题时,它很容易编造虚假答案。 ● 实时性:而当你询问它最近发生的新闻事件时,它会干脆地告诉你…

基于PHP的电脑商城系统

有需要请加文章底部Q哦 可远程调试 基于PHP的电脑商城系统 一 介绍 此电脑商城系统基于原生PHP开发&#xff0c;数据库mysql&#xff0c;前端bootstrap。用户可注册登录&#xff0c;购物下单&#xff0c;评论等。管理员登录后台对电脑商品&#xff0c;用户&#xff0c;订单&a…

使用 Elasticsearch 轻松进行中文文本分类

本文记录下使用 Elasticsearch 进行文本分类&#xff0c;当我第一次偶然发现 Elasticsearch 时&#xff0c;就被它的易用性、速度和配置选项所吸引。每次使用 Elasticsearch&#xff0c;我都能找到一种更为简单的方法来解决我一贯通过传统的自然语言处理 (NLP) 工具和技术来解决…

maven工具-maven的使用-镜像仓库、本地仓、IDEA使用maven

Maven 一、为什么使用maven 添加第三方jar包jar包之间的依赖关系处理jar包之间的冲突获取第三方jar包将项目拆分成多个工程模块实现项目的分布式部署 二、maven简介 ​ Maven项目对象模型(POM)&#xff0c;可以通过一小段描述信息来管理项目的构建&#xff0c;报告和文档的…