LVS - DR

LVS-DR 数据流向

  • 客户端发送请求到 Director Server(负载均衡器),请求的数据报文(源 IP 是 CIP,目标 IP 是 VIP)到达内核空间。
  • Director Server 和 Real Server 在同一个网络中,数据通过二层数据链路层来传输。
  • 内核空间判断数据包的目标IP是本机VIP,此时IPVS(IP虚拟服务器)比对数据包请求的服务是否是集群服务,是集群服务就重新封装数据包。修改源 MAC 地址为 Director Server 的 MAC地址,修改目标 MAC 地址为 Real Server 的 MAC 地址,源 IP 地址与目标 IP 地址没有改变,然后将数据包发送给 Real Server。
  • 到达 Real Server 的请求报文的 MAC 地址是自身的 MAC 地址,就接收此报文。数据包重新封装报文(源 IP 地址为 VIP,目标 IP 为 CIP),将响应报文通过 lo 接口传送给物理网卡然后向外发出。
  • Real Server 直接将响应报文传送到客户端。

DR 模式的特点

  • Director Server 和 Real Server 必须在同一个物理网络中。
  • Real Server 可以使用私有地址,也可以使用公网地址。如果使用公网地址,可以通过互联网对 RIP 进行直接访问。
  • Director Server作为群集的访问入口,但不作为网关使用。
  • 所有的请求报文经由 Director Server,但回复响应报文不能经过 Director Server。
  • Real Server 的网关不允许指向 Director Server IP,即Real Server发送的数据包不允许经过 Director Server。
  • Real Server 上的 lo 接口配置 VIP 的 IP 地址。

DR模式的优缺点

  • 优点

负载均衡器只负责将请求包分给物理服务器,而物理服务器将应答包直接发送给用户,所以负载均衡器能处理很巨大的请求流量,这种方式一台负载均衡能为超过100台物理服务器服务,负载均衡器不再是系统瓶颈,使用LVS-DR方式,如果你的负载均衡器拥有100M全双工网卡,就使用VS能达到1G的吞吐量甚至更高

  • 缺点

所有的调度器和节点服务器在同一个广播域,不支持异地容灾

                   

LVS-DR 模式中ARP问题

问题一

在LVS-DR负载均衡群集中,负载均衡器与节点服务器都要配置相同的VIP地址,在局域网中具有相同的IP地址,势必会造成各服务器ARP通信的紊乱;

当ARP广播发送到LVS-DR集群时,因为负载均衡器和节点服务器都是连接到相同的网络上,它们都会接收到ARP广播,应只有前端的负载均衡器进行响应,其他节点服务器不应该响应ARP广播。

解决方法:

ari_ignore=1

防止网关路由器去发送ARP广播时,调度器和节点服务器都会进行响应,这会导致ARP缓存表混乱;不对非本地物理网卡的ARP请求进行响应,因为VIP承载 lo:0

问题二

RealServer返回报文(源IP是VIP)经路由器转发,重新封装报文时,需要先获取路由器的MAC地址,发送ARP请求时,Linux默认使用IP包的源IP地址(即VIP)作为ARP请求包中的源IP地址

此时路由器的路由表进行更新,VIP的MAC地址由原先的均衡器变为节点服务器,路由器根据ARP表项,会将新来的请求报文转发给节点服务器,导致均衡器的VIP失效,又会造成VIP的紊乱。

解决方法:

arp_announce=2

系统不使用响应数据的源IP地址(VIP)来做为本机进行的ARP请求报文的源IP地址,而是发送报文的物理网卡的IP地址,这样可以防止网关路由器接受到的源IP(VIP)地址来做ARP请求报文后,有去更新ARP缓存,会导致外网再发送请求时,数据包到不了调度器

实验

准备四台机器:
192.168.154.20 为LVS调度器
192.168.154.30 为节点服务器
192.168.154.50 为节点服务器
192.168.154.60 为nfs共享存储

192.168.154.10 —— nfs服务器配置

192.168.154.20   192.168.154.40

两台节点服务器配置一致

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/80919.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Docker容器监控之 CAdvisor+InfluxDB+Granfana

1. 原命令 通过docker stats命令可以很方便的看到当前宿主机上所有容器的CPU,内存以及网络流量等数据,一般小公司够用了。。。。 但是,docker stats统计结果只能是当前宿主机的全部容器,数据资料是实时的,没有地方存储、没有健康指…

游戏服务端性能测试实战总结

导语:近期经历了一系列的性能测试,涵盖了Web服务器和游戏服务器的领域。在这篇文章中,我将会对游戏服务端所做的测试进行详细整理和记录。需要注意的是,本文着重于记录,而并非深入的编程讨论。在这里,我将与…

Ompl初探

在/ompl-1.x.0/build/Release/bin下有很多生成的demo可执行文件 在终端执行 ./demo_Point2DPlanning 测试程序 #include <ompl/base/SpaceInformation.h> #include <ompl/base/spaces/SE3StateSpace.h> #include <ompl/base/StateSpace.h> #include <o…

跨平台图表:ChartDirector for .NET 7.1 Crack

什么是新的 ChartDirector for .NET 7.0 支持跨平台使用&#xff0c;但仅限于 .NET 6。这是因为在 .NET 7 中&#xff0c;Microsoft 停止了用于非 Windows 使用的 .NET 图形库 System.Drawing.Common。由于 ChartDirector for .NET 7.0 依赖于该库&#xff0c;因此它不再支持 .…

运放的分类、运放的参数

一、运放的分类 运放按功能分为通用运放与专用运放&#xff08;高速运放、精密运放、低IB运放等&#xff09;。 1.1通用运放 除廉价外&#xff0c;没有任何最优指标的运放。 例&#xff1a;uA741&#xff0c;LM324&#xff0c;TL06X&#xff0c;TL07X、TL08X等 国外知名运放…

【Django】Task4 序列化及其高级使用、ModelViewSet

【Django】Task4 序列化及其高级使用、ModelViewSet Task4主要了解序列化及掌握其高级使用&#xff0c;了解ModelViewSet的作用&#xff0c;ModelViewSet 是 Django REST framework&#xff08;DRF&#xff09;中的一个视图集类&#xff0c;用于快速创建处理模型数据的 API 视…

如何从用户视角搭建可观测体系?阿里云ECS业务团队的设计思路

一分钟精华速览 互联网平台以业务为中心&#xff0c;以用户为中心&#xff0c;平台的功能服务、质量和用户体验等是关键的目标&#xff0c;仅仅关注后台系统的可用性是不够的&#xff0c;以传统运维的视角来解决故障、做监控会比较被动。 本文以阿里云 ECS 业务为例&#xff…

某多多商品平台数据采集

某多多商品平台数据采集 声明逆向目标寻找加密位置代码分析补环境补充内容声明 本文章中所有内容仅供学习交流,严禁用于商业用途和非法用途,否则由此产生的一切后果均与作者 无关,若有侵权,请私信我立即删除! 逆向目标 Anti-Content参数 寻找加密位置 先在控制台全局搜…

CCF HPC China2023 | 盛大开幕,邀您关注澎峰科技

2023年8月24日&#xff0c;以“算力互联智领未来”为主题的第十九届全国高性能计算学术年会&#xff08;CCF HPC China 2023&#xff09;在青岛红岛国际会议展览中心拉开帷幕。特邀嘉宾涵盖行业大咖&#xff0c;主持阵容同样是“重量级”——来自国家并行计算机工程技术研究中心…

设计模式之工厂模式

文章目录 一、介绍二、基本组件三、案例应用1. 代码演示2. 优缺点 四、静态工厂1. 应用 五、总结 一、介绍 工厂模式(Factory Pattern)是最常使用的设计模式之一&#xff0c;属于创建型设计模式。在该设计模式中&#xff0c;我们不再使用new来实例化对象&#xff0c;而是通过工…

Mysql-InnoDB数据页结构

一、页结构说明 大致分7部分 二、记录在页中的存储 2.1 页面记录内存结构 行格式 存储到 User Records 部分&#xff0c;每当我们插入一条记录&#xff0c;都会从 Free Space 部分申请一个记录大小的空间划分到 User Records 部分 &#xff0c;用完则申请新的页&#xff1b; …

一网打尽java注解-克隆-面向对象设计原则-设计模式

文章目录 注解内置注解元注解 对象克隆为什么要克隆&#xff1f;如何克隆浅克隆深克隆 Java设计模式什么是设计模式&#xff1f;为什么要学习设计模式&#xff1f; 建模语言类接口类之间的关系依赖关系关联关系聚合关系组合关系继承关系实现关系 面向对象设计原则单一职责开闭原…