缓存穿透、缓存击穿和缓存雪崩

csdntup

👏作者简介:大家好,我是爱发博客的嗯哼,爱好Java的小菜鸟
🔥如果感觉博主的文章还不错的话,请👍三连支持👍一下博主哦
📝社区论坛:希望大家能加入社区共同进步
🧑‍💼个人博客:智慧笔记
📕系列专栏:Redis

文章目录

  • 前言
  • 一、问题前引
  • 二、缓存穿透
    • 1. 问题描述
    • 2. 问题解决
      • 2.1 缓存空数据
      • 2.2 布隆过滤器
  • 三、缓存击穿
    • 1. 问题描述
    • 2. 问题解决
      • 2.1 设置逻辑过期
      • 2.2 设置互斥锁
  • 四、缓存雪崩
    • 1. 问题描述
    • 2. 问题解决
      • 2.1 设置随机过期时间
      • 2.2 缓存高可用
  • 总结
  • 结语

前言

一聊到redis,必不可少的就是缓存三兄弟的问题,即缓存穿透、缓存击穿和缓存雪崩,这三个问题在业务场景中相对来说比较常见的,也是比较基础的三种问题。那么这三种问题是如何引起的,并且应该如何解决,就是本章探讨的话题。


一、问题前引

大家都知道,Redis一般搭配MySQL来使用,来充当缓存处理一些业务数据。但为什么要Redis用来充当缓存呢,不能直接使用MySQL吗?

当然是可以的,但是对于一些请求量大并发次数高的场景就有问题了。

MySQL是基于磁盘的,请求查询速度偏慢,所以就需要一个基于内存的速度快的工具来缓存这些数据,Redis就应运而生了。而且当大量请求到来时,只有MySQL的话,有可能承受不住大量请求导致MySQL宕机,此时就会影响到整个服务器,所以Redis此时又充当了一个保护缓冲的作用。

二、缓存穿透

1. 问题描述

缓存穿透主要体现在穿透两个字上,穿透即为穿过缓存,打到数据库上。

当一个请求访问的时候,此时Redis没有缓存该数据,然后去数据库查询该数据也查询到,说明没有该数据。
在这里插入图片描述

此时你或许还不以为然,不就一个空数据吗?多稀罕啊。

但如果该请求是恶意请求,此时无数条请求同时访问,缓存中没有,全部都会打在数据库上,刚好还是类似于

select * from table where name = "李白"

表中有1000万条数据,name字段也没有创建索引。这时候问题是不是就大了?服务器稍微差一点,就会直接宕机。
在这里插入图片描述

这时你或许该问了,那该如何解决呢?不要急,机智的程序猿肯定有应对之法。

2. 问题解决

2.1 缓存空数据

如果此时将请求的数据缓存起来,是不是就可以避免请求打到数据库了?

你现在或许又要问了,空数据怎么缓存呢?没错,就是缓存空数据

如果请求的数据查询数据为空的话,就将该数据为空值缓存到Redis中,以后每次请求都直接访问Redis,查询到该数据,直接返回空值。这样就避免恶意请求全部打到数据库了。
在这里插入图片描述

2.2 布隆过滤器

不了解布隆过滤器的同学可以看这篇文章硬核 | Redis 布隆(Bloom Filter)过滤器原理与实战

布隆过滤器 (Bloom Filter)是由 Burton Howard Bloom 于 1970 年提出,它是一种 space efficient 的概率型数据结构,用于判断一个元素是否在集合中。

当布隆过滤器说,某个数据存在时,这个数据可能不存在;当布隆过滤器说,某个数据不存在时,那么这个数据一定不存在

哈希表也能用于判断元素是否在集合中,但是布隆过滤器只需要哈希表的 1/8 或 1/4 的空间复杂度就能完成同样的问题。

布隆过滤器可以插入元素,但不可以删除已有元素

其中的元素越多,false positive rate(误报率)越大,但是 false negative (漏报)是不可能的。
布隆过滤器原理

BloomFilter 的算法是,首先分配一块内存空间做 bit 数组,数组的 bit 位初始值全部设为 0。

加入元素时,采用 k 个相互独立的 Hash 函数计算,然后将元素 Hash 映射的 K 个位置全部设置为 1。

检测 key 是否存在,仍然用这 k 个 Hash 函数计算出 k 个位置,如果位置全部为 1,则表明 key 存在,否则不存在。

如下图所示:
在这里插入图片描述

三、缓存击穿

1. 问题描述

缓存击穿一般常见于电商场景,在双十一和六一八这种大促活动中,缓存中会缓存一些热点数据,随时都有大量的请求访问这个数据。

当某个时刻这个数据突然过期,大量请求就会集中打到MySQL数据库中。
在这里插入图片描述

如何解决这个问题呢?

2. 问题解决

该问题导致的原因是因为该缓存数据过期了,但却有大量请求访问该数据;

有两条思路去解决:

  • 不让该数据过期
  • 不让大量请求访问数据库

2.1 设置逻辑过期

热点数据随时都会有变化,不设置过期时间的话会导致更多问题,不能因此失彼。

但可以换一个思路,在数据过期时无缝衔接一个新数据,在请求看来这就是没有过期时间的一个数据。

在这里插入图片描述

此时如果大量请求访问该数据,刚好该数据缓存逻辑过期,但没有设置物理过期时间,所以数据并不会被redis清除。

此时由业务代码去判断,该缓存是否过期,如果过期则获取互斥锁新建一个子线程去访问数据库重新设置缓存,主线程返回过期数据,没有获取互斥锁的都返回过期数据

完整代码如下:

 //逻辑过期public Shop queryWithLogicalExpire(Long id) {String key = CACHE_SHOP_KEY + id;//1.从redis查询商铺缓存String shopJson = stringRedisTemplate.opsForValue().get(key);//2.判断是否存在if (StrUtil.isBlank(shopJson)) {//3.未命中return null;}//4.命中,需要先把json反序列化为对象RedisData redisData = JSONUtil.toBean(shopJson, RedisData.class);Shop shop = (Shop) redisData.getData();LocalDateTime expireTime = redisData.getExpireTime();//5.判断是否过期if (expireTime.isAfter(LocalDateTime.now())) {//5.1还未过期return shop;}//5.2已经过期,需要缓存重建//6.缓存重建//6.1获取互斥锁String lockKey = LOCK_SHOP_KEY + id;boolean isLock = tryLock(lockKey);//6.2判断是否获取锁成功if (isLock) {// 6.3成功,开启独立线程,实现缓存重建CACHE_REBUILD_EXECUTOR.submit(() -> {try {//重建缓存this.saveShop2Redis(id, 20L);} catch (Exception e) {e.printStackTrace();} finally {//释放锁unlock(lockKey);}});}//6.4返回过期的店铺信息//7.返回return shop;}

2.2 设置互斥锁

怎么才能不让大量数据去访问数据库呢?

或许大家已经想到了,上面设置逻辑过期用到过的一个功能:互斥锁

在这里插入图片描述

请求首先访问缓存,如果命中的话,直接返回该数据。

如果未命中的话,则去获取互斥锁,获取成功则查询数据库重新设置缓存,获取失败,则重试获取缓存数据

完整代码如下:

/*** 通过互斥锁机制查询商铺信息* @param key*/private Shop queryShopWithMutex(String key, String cityCode) {Shop shop = null;// 1.查询缓存String shopJson = stringRedisTemplate.opsForValue().get(key);// 2.判断缓存是否有数据if (StringUtils.isNotBlank(shopJson)) {// 3.有,则返回shop = JSONObject.parseObject(shopJson, Shop.class);return shop;}// 4.无,则获取互斥锁String lockKey = RedisConstants.LOCK_SHOP_KEY + shopCode;Boolean isLock = tryLock(lockKey);// 5.判断获取锁是否成功try {if (!isLock) {// 6.获取失败, 休眠并重试Thread.sleep(100);return queryShopWithMutex(key, shopCode);}// 7.获取成功, 查询数据库shop = baseMapper.getByCode(shopCode);// 8.判断数据库是否有数据if (shop == null) {// 9.无,则将空数据写入redisstringRedisTemplate.opsForValue().set(key, "", RedisConstants.CACHE_NULL_TTL, TimeUnit.MINUTES);return null;}// 10.有,则将数据写入redisstringRedisTemplate.opsForValue().set(key, JSONObject.toJSONString(shop), RedisConstants.CACHE_SHOP_TTL, TimeUnit.MINUTES);} catch (Exception e) {throw new RuntimeException(e);} finally {// 11.释放锁unLock(lockKey);}// 12.返回数据return shop;}

关于两种方案,各有各的优缺点

  • 逻辑过期: 及时性高,但数据不是最新数据,适合最终一致性的业务
  • 互斥锁: 一致性高,但会有数据延迟,适合强一致性的业务

四、缓存雪崩

1. 问题描述

缓存雪崩可以简单的理解为大范围的缓存击穿。

有两个可能引起缓存雪崩问题:

  • 有大量的热门缓存同时失效。会导致大量的请求,访问数据库。而数据库很有可能因为扛不住压力,而直接挂掉。
  • 缓存服务器down机了,可能是机器硬件问题,或者机房网络问题。造成了整个缓存的不可用。
    ![在这里插入图片描述](https://img-blog.csdnimg.cn/332236c568114666ae63f7ad3e20ea9e.png

2. 问题解决

2.1 设置随机过期时间

为了解决缓存雪崩问题,我们首先要尽量避免缓存同时失效的情况发生。

这就要求我们不要设置相同的过期时间。

可以在设置的过期时间基础上,再加个1~60秒的随机数。

实际过期时间 = 过期时间 + 1~60秒的随机数

这样即使在高并发的情况下,多个请求同时设置过期时间,由于有随机数的存在,也不会出现太多相同的过期key。

2.2 缓存高可用

针对缓存服务器down机的情况,在前期做系统设计时,可以做一些高可用架构

可以使用哨兵机制或者集群模式,当一个Redis宕机,随时会有一个Redis补充上来,避免一个Redis宕机而导致大量请求去访问数据库,而使数据库压力过载。

比如使用哨兵模式之后,当某个master服务下线时,自动将该master下的某个slave服务升级为master服务,替代已下线的master服务继续处理请求。

总结

缓存穿透、缓存击穿和缓存雪崩是三种与缓存相关的常见问题,它们的概念和影响有所不同。

关于Redis缓存三兄弟的问题及解决主要就是以下几个方面:

缓存穿透:

  • 缓存穿透指的是对于一个不存在于缓存和数据库中的数据的请求,每次请求都会穿过缓存层直接访问数据库。

  • 恶意的攻击者可以通过构造不存在的数据请求,导致大量请求直接访问数据库,增加数据库负载压力。

  • 解决缓存穿透可以采用存储空数据和合适的校验技术,例如使用布隆过滤器等技术,在缓存层进行初步过滤,避免无效请求直接访问数据库。

缓存击穿:

  • 缓存击穿指的是在高并发情况下,一个热点数据过期或失效时,大量请求同时涌入数据库,造成数据库压力激增。

  • 由于热点数据没有命中缓存,而直接访问数据库,使得缓存无法发挥作用,增加了数据库的负载。

  • 解决缓存击穿可以采取设置热点数据永不过期,或者使用互斥锁等机制来控制只有一个线程去加载数据。

缓存雪崩:

  • 缓存雪崩指的是在某个时间点,缓存中的大量数据同时失效或过期或者缓存服务宕机,导致大量请求直接访问后端数据库,造成数据库压力过大。
  • 当缓存中的数据集中过期或失效时,没有缓存可用,导致大量请求直接访问数据库,可能引起数据库负载激增甚至崩溃。
  • 解决缓存雪崩可以采用合理的缓存失效时间设置、使用高可用架构等方式来减少缓存失效的风险。

当然能解决的方式有很多,这里只是列举出来常见的解决方法。如果有更好的建议可以发在评论区。


结语

每个人都有自己独特的才华和潜能,在这个广袤的世界上,你的存在是有意义的。无论你是谁,你的背景如何,你所处的环境怎样,只要你敢于跨出舒适区,付出努力,追求卓越,你就能够开创属于自己的辉煌。

我们下期见。

每一次努力都是一次进步,即使进展缓慢,也要坚持不懈。

往期文章推荐

  • 消息中间件相关面试题
  • Java集合相关面试题
  • Java集合详解
  • 微服务相关面试题
  • redis相关面试题
  • 图解 Paxos 算法
  • Spring相关面试题
  • Mysql相关面试题

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/80968.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

快速指南:使用Termux SFTP通过远程进行文件传输——”cpolar内网穿透“

文章目录 1. 安装openSSH2. 安装cpolar3. 远程SFTP连接配置4. 远程SFTP访问4. 配置固定远程连接地址 SFTP(SSH File Transfer Protocol)是一种基于SSH(Secure Shell)安全协议的文件传输协议。与FTP协议相比,SFTP使用了…

DAY24

题目一 啊 看着挺复杂 其实很简单 第一种方法 就是纵轴是怪兽编号 横轴是能力值 看看能不能打过 逻辑很简单 看看能不能打得过 打过的就在花钱和直接打里面取小的 打不过就只能花钱 这种方法就导致 如果怪兽的能力值很大 那么我们就需要很大的空间 所以引出下一种做法 纵…

JVM——垃圾回收(垃圾回收算法+分代垃圾回收+垃圾回收器)

1.如何判断对象可以回收 1.1引用计数法 只要一个对象被其他对象所引用,就要让该对象的技术加1,某个对象不再引用其,则让它计数减1。当计数变为0时就可以作为垃圾被回收。 有一个弊端叫做循环引用,两个的引用计数都是1&#xff…

【附安装包】Moldflow2023安装教程

软件下载 软件:Moldflow版本:2023语言:简体中文大小:5.55G安装环境:Win11/Win10/Win8/Win7硬件要求:CPU2.0GHz 内存4G(或更高)下载通道①百度网盘丨64位下载链接:https://pan.baidu…

linux centos7 sort命令的学习与训练

sort命令的功能是对文件中的各行进行排序。sort命令有许多非常实用的选项,这些选项最初是用来对数据库格式的文件内容进行各种排序操作的。实际上,sort命令可以被认为是一个非常强大的数据管理工具,用来管理内容类似数据库记录的文件。 sort…

QT通过ODBC连接GBase 8s数据库(Windows)示例

示例环境: 操作系统:Windows 10 64位数据库及CSDK版本:GBase 8s V8.8_3.0.0_1 64位QT:5.12.0 64位 1,CSDK安装及ODBC配置 1.1,免安装版CSDK 下载免安装版的CSDK驱动,地址:https:…

企业如何做好实施数字工厂管理系统前的需求分析

随着工业4.0的到来,数字工厂系统解决方案已经成为企业提高生产效率、优化资源配置和提升产品质量的重要工具。在考虑实施数字工厂管理系统之前,企业需要进行详细的需求分析,以确保系统的实施能够真正满足企业的业务需求。本文将探讨企业如何做…

Python(八十六)字符串的编码与解码

❤️ 专栏简介:本专栏记录了我个人从零开始学习Python编程的过程。在这个专栏中,我将分享我在学习Python的过程中的学习笔记、学习路线以及各个知识点。 ☀️ 专栏适用人群 :本专栏适用于希望学习Python编程的初学者和有一定编程基础的人。无…

阿里云容器镜像服务ACR(Alibaba Cloud Container Registry)推送镜像全过程及总结

前提:安装配置好docker,可参考我这篇 基于CentOS7安装配置docker与docker-compose。 一、设置访问凭证 1.1 容器镜像服务ACR 登录进入阿里云首页,点击 产品-容器-容器镜像服务ACR 点击管理控制台 1.2 进入控制台-点击实例列表 个人容器…

生物医学翻译,选择专业翻译公司有何优势

我们知道,生物医学翻译是基于生物医学等相关行业的翻译服务,具有较强的专业性和复杂性,为了确保生物医学翻译的质量,务必选择专业的翻译公司。那么,专业翻译公司有何优势,北京生物医学翻译哪家好&#xff1…

【应用层】网络基础 -- HTTP协议

再谈协议HTTP协议认识URLurlencode和urldecodeHTTP协议格式HTTP的方法HTTP的状态码HTTP常见HeaderHTTP周边会话保持 再谈协议 协议是一种 “约定”. socket api的接口,在读写数据时,都是按 “字符串” 的方式来发送接收的(tcp是以字节流的方式发送的&am…

Java“牵手”天猫商品评论API接口数据,天猫API接口申请指南

天猫商城是一个网上购物平台,售卖各类商品,包括服装、鞋类、家居用品、美妆产品、电子产品等。要获取淘宝商品详情页面评价内容数据,您可以通过开放平台的接口或者直接访问淘宝商城的网页来获取商品详情信息内的评论数据。以下是两种常用方法…