OpenCV图片校正

OpenCV图片校正

  • 背景
  • 几种校正方法
  • 1.傅里叶变换 + 霍夫变换+ 直线 + 角度 + 旋转
  • 3.四点透视 + 角度 + 旋转
  • 4.检测矩形轮廓 + 角度 + 旋转
  • 参考

背景

遇到偏的图片想要校正成水平或者垂直的。

几种校正方法

对于倾斜的图片通过矫正可以得到水平的图片。一般有如下几种基于opencv的组合方式进行图片矫正。

  • 1、傅里叶变换 + 霍夫变换+ 直线 + 角度 + 旋转
  • 2、边缘检测 + 霍夫变换 + 直线+角度 + 旋转
  • 3、四点透视 + 角度 + 旋转
  • 4、检测矩形轮廓 + 角度 + 旋转

1.傅里叶变换 + 霍夫变换+ 直线 + 角度 + 旋转

#include <opencv2/core/core.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <iostream>using namespace cv;
using namespace std;// 二值化阈值
#define GRAY_THRESH 150// 直线上点的个数
#define HOUGH_VOTE 50int main(int argc, char **argv)
{//Read a single-channel imageconst char* filename = "31.png";Mat srcImg = imread(filename, CV_LOAD_IMAGE_GRAYSCALE);if (srcImg.empty())return -1;imshow("source", srcImg);Point center(srcImg.cols / 2, srcImg.rows / 2);//Expand image to an optimal size, for faster processing speed//Set widths of borders in four directions//If borderType==BORDER_CONSTANT, fill the borders with (0,0,0)Mat padded;int opWidth = getOptimalDFTSize(srcImg.rows);int opHeight = getOptimalDFTSize(srcImg.cols);copyMakeBorder(srcImg, padded, 0, opWidth - srcImg.rows, 0, opHeight - srcImg.cols, BORDER_CONSTANT, Scalar::all(0));Mat planes[] = { Mat_<float>(padded), Mat::zeros(padded.size(), CV_32F) };Mat comImg;//Merge into a double-channel imagemerge(planes, 2, comImg);//Use the same image as input and output,//so that the results can fit in Mat welldft(comImg, comImg);//Compute the magnitude//planes[0]=Re(DFT(I)), planes[1]=Im(DFT(I))//magnitude=sqrt(Re^2+Im^2)split(comImg, planes);magnitude(planes[0], planes[1], planes[0]);//Switch to logarithmic scale, for better visual results//M2=log(1+M1)Mat magMat = planes[0];magMat += Scalar::all(1);log(magMat, magMat);//Crop the spectrum//Width and height of magMat should be even, so that they can be divided by 2//-2 is 11111110 in binary system, operator & make sure width and height are always evenmagMat = magMat(Rect(0, 0, magMat.cols & -2, magMat.rows & -2));//Rearrange the quadrants of Fourier image,//so that the origin is at the center of image,//and move the high frequency to the cornersint cx = magMat.cols / 2;int cy = magMat.rows / 2;Mat q0(magMat, Rect(0, 0, cx, cy));Mat q1(magMat, Rect(0, cy, cx, cy));Mat q2(magMat, Rect(cx, cy, cx, cy));Mat q3(magMat, Rect(cx, 0, cx, cy));Mat tmp;q0.copyTo(tmp);q2.copyTo(q0);tmp.copyTo(q2);q1.copyTo(tmp);q3.copyTo(q1);tmp.copyTo(q3);//Normalize the magnitude to [0,1], then to[0,255]normalize(magMat, magMat, 0, 1, CV_MINMAX);Mat magImg(magMat.size(), CV_8UC1);magMat.convertTo(magImg, CV_8UC1, 255, 0);imshow("magnitude", magImg);//imwrite("imageText_mag.jpg",magImg);//Turn into binary imagethreshold(magImg, magImg, GRAY_THRESH, 255, CV_THRESH_BINARY);imshow("mag_binary", magImg);//imwrite("imageText_bin.jpg",magImg);//Find lines with Hough Transformationvector<Vec2f> lines;float pi180 = (float)CV_PI / 180;Mat linImg(magImg.size(), CV_8UC3);HoughLines(magImg, lines, 1, pi180, HOUGH_VOTE, 0, 0);int numLines = lines.size();for (int l = 0; l<numLines; l++){float rho = lines[l][0], theta = lines[l][1];Point pt1, pt2;double a = cos(theta), b = sin(theta);double x0 = a*rho, y0 = b*rho;pt1.x = cvRound(x0 + 1000 * (-b));pt1.y = cvRound(y0 + 1000 * (a));pt2.x = cvRound(x0 - 1000 * (-b));pt2.y = cvRound(y0 - 1000 * (a));line(linImg, pt1, pt2, Scalar(255, 0, 0), 3, 8, 0);}imshow("lines", linImg);//imwrite("imageText_line.jpg",linImg);if (lines.size() == 3){cout << "found three angels:" << endl;cout << lines[0][1] * 180 / CV_PI << endl << lines[1][1] * 180 / CV_PI << endl << lines[2][1] * 180 / CV_PI << endl << endl;}//Find the proper angel from the three found angelsfloat angel = 0;float piThresh = (float)CV_PI / 90;float pi2 = CV_PI / 2;for (int l = 0; l<numLines; l++){float theta = lines[l][1];if (abs(theta) < piThresh || abs(theta - pi2) < piThresh)continue;else{angel = theta;break;}}//Calculate the rotation angel//The image has to be square,//so that the rotation angel can be calculate rightangel = angel<pi2 ? angel : angel - CV_PI;if (angel != pi2){float angelT = srcImg.rows*tan(angel) / srcImg.cols;angel = atan(angelT);}float angelD = angel * 180 / (float)CV_PI;cout << "the rotation angel to be applied:" << endl << angelD << endl << endl;//Rotate the image to recoverMat rotMat = getRotationMatrix2D(center, angelD, 1.0);Mat dstImg = Mat::ones(srcImg.size(), CV_8UC3);warpAffine(srcImg, dstImg, rotMat, srcImg.size(), 1, 0, Scalar(255, 255, 255));imshow("result", dstImg);//imwrite("imageText_D.jpg",dstImg);waitKey(0);return 0;
}

opencv4x

#include <opencv2/core/core.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgcodecs/legacy/constants_c.h> 
#include <iostream>using namespace cv;
using namespace std;// 二值化阈值
#define GRAY_THRESH 150// 直线上点的个数
#define HOUGH_VOTE 50int main(int argc, char **argv)
{//Read a single-channel imageconst char* filename = argv[1];Mat srcImg = imread(filename, CV_LOAD_IMAGE_GRAYSCALE);if (srcImg.empty())return -1;imshow("source", srcImg);Point center(srcImg.cols / 2, srcImg.rows / 2);//Expand image to an optimal size, for faster processing speed//Set widths of borders in four directions//If borderType==BORDER_CONSTANT, fill the borders with (0,0,0)Mat padded;int opWidth = getOptimalDFTSize(srcImg.rows);int opHeight = getOptimalDFTSize(srcImg.cols);copyMakeBorder(srcImg, padded, 0, opWidth - srcImg.rows, 0, opHeight - srcImg.cols, BORDER_CONSTANT, Scalar::all(0));Mat planes[] = { Mat_<float>(padded), Mat::zeros(padded.size(), CV_32F) };Mat comImg;//Merge into a double-channel imagemerge(planes, 2, comImg);//Use the same image as input and output,//so that the results can fit in Mat welldft(comImg, comImg);//Compute the magnitude//planes[0]=Re(DFT(I)), planes[1]=Im(DFT(I))//magnitude=sqrt(Re^2+Im^2)split(comImg, planes);magnitude(planes[0], planes[1], planes[0]);//Switch to logarithmic scale, for better visual results//M2=log(1+M1)Mat magMat = planes[0];magMat += Scalar::all(1);log(magMat, magMat);//Crop the spectrum//Width and height of magMat should be even, so that they can be divided by 2//-2 is 11111110 in binary system, operator & make sure width and height are always evenmagMat = magMat(Rect(0, 0, magMat.cols & -2, magMat.rows & -2));//Rearrange the quadrants of Fourier image,//so that the origin is at the center of image,//and move the high frequency to the cornersint cx = magMat.cols / 2;int cy = magMat.rows / 2;Mat q0(magMat, Rect(0, 0, cx, cy));Mat q1(magMat, Rect(0, cy, cx, cy));Mat q2(magMat, Rect(cx, cy, cx, cy));Mat q3(magMat, Rect(cx, 0, cx, cy));Mat tmp;q0.copyTo(tmp);q2.copyTo(q0);tmp.copyTo(q2);q1.copyTo(tmp);q3.copyTo(q1);tmp.copyTo(q3);//Normalize the magnitude to [0,1], then to[0,255]//normalize(magMat, magMat, 0, 1, CV_MINMAX);normalize(magMat, magMat, 0, 1, NORM_MINMAX);Mat magImg(magMat.size(), CV_8UC1);magMat.convertTo(magImg, CV_8UC1, 255, 0);imshow("magnitude", magImg);//imwrite("imageText_mag.jpg",magImg);//Turn into binary imagethreshold(magImg, magImg, GRAY_THRESH, 255, cv::THRESH_BINARY);imshow("mag_binary", magImg);//imwrite("imageText_bin.jpg",magImg);//Find lines with Hough Transformationvector<Vec2f> lines;float pi180 = (float)CV_PI / 180;Mat linImg(magImg.size(), CV_8UC3);HoughLines(magImg, lines, 1, pi180, HOUGH_VOTE, 0, 0);int numLines = lines.size();for (int l = 0; l<numLines; l++){float rho = lines[l][0], theta = lines[l][1];Point pt1, pt2;double a = cos(theta), b = sin(theta);double x0 = a*rho, y0 = b*rho;pt1.x = cvRound(x0 + 1000 * (-b));pt1.y = cvRound(y0 + 1000 * (a));pt2.x = cvRound(x0 - 1000 * (-b));pt2.y = cvRound(y0 - 1000 * (a));line(linImg, pt1, pt2, Scalar(255, 0, 0), 3, 8, 0);}imshow("lines", linImg);//imwrite("imageText_line.jpg",linImg);if (lines.size() == 3){cout << "found three angels:" << endl;cout << lines[0][1] * 180 / CV_PI << endl << lines[1][1] * 180 / CV_PI << endl << lines[2][1] * 180 / CV_PI << endl << endl;}//Find the proper angel from the three found angelsfloat angel = 0;float piThresh = (float)CV_PI / 90;float pi2 = CV_PI / 2;for (int l = 0; l<numLines; l++){float theta = lines[l][1];if (abs(theta) < piThresh || abs(theta - pi2) < piThresh)continue;else{angel = theta;break;}}//Calculate the rotation angel//The image has to be square,//so that the rotation angel can be calculate rightangel = angel<pi2 ? angel : angel - CV_PI;if (angel != pi2){float angelT = srcImg.rows*tan(angel) / srcImg.cols;angel = atan(angelT);}//float angelD = angel * 180 / (float)CV_PI;float angelD = angel * 180 / (float)CV_PI;cout << "the rotation angel to be applied: "<< angelD << endl << endl;//Rotate the image to recoverMat rotMat = getRotationMatrix2D(center, angelD, 1.0);Mat dstImg = Mat::ones(srcImg.size(), CV_8UC3);warpAffine(srcImg, dstImg, rotMat, srcImg.size(), 1, 0, Scalar(255, 255, 255));imshow("result", dstImg);imwrite("imageText_D.jpg",dstImg);waitKey(0);return 0;
}

CMakeLists.txt

project( main )
cmake_minimum_required(VERSION 3.10) 
#添加头文件路径
include_directories(/usr/local/include /usr/local/include/opencv4 /usr/local/include/opencv4/opencv2)
#添加库文件路径
link_directories(/usr/local/lib)add_executable(main test.cpp)
target_link_libraries( main -lopencv_core  -lopencv_highgui -lopencv_imgproc -lopencv_imgcodecs)

在这里插入图片描述
在这里插入图片描述

3.四点透视 + 角度 + 旋转

#include "opencv2/imgproc.hpp"
#include "opencv2/highgui.hpp"
#include <iostream>
using namespace cv;
using namespace std;// 直线上点的个数
#define HOUGH_VOTE 50//度数转换
double DegreeTrans(double theta)
{double res = theta / CV_PI * 180;return res;
}//逆时针旋转图像degree角度(原尺寸)    
void rotateImage(Mat src, Mat& img_rotate, double degree)
{//旋转中心为图像中心    Point2f center;center.x = float(src.cols / 2.0);center.y = float(src.rows / 2.0);int length = 0;length = sqrt(src.cols*src.cols + src.rows*src.rows);//计算二维旋转的仿射变换矩阵  Mat M = getRotationMatrix2D(center, degree, 1);warpAffine(src, img_rotate, M, Size(length, length), 1, 0, Scalar(255, 255, 255));//仿射变换,背景色填充为白色  
}//通过霍夫变换计算角度
double CalcDegree(const Mat &srcImage, Mat &dst)
{Mat midImage, dstImage;Canny(srcImage, midImage, 50, 200, 3);cvtColor(midImage, dstImage, CV_GRAY2BGR);//通过霍夫变换检测直线vector<Vec2f> lines;HoughLines(midImage, lines, 1, CV_PI / 180, HOUGH_VOTE);//第5个参数就是阈值,阈值越大,检测精度越高//cout << lines.size() << endl;//由于图像不同,阈值不好设定,因为阈值设定过高导致无法检测直线,阈值过低直线太多,速度很慢//所以根据阈值由大到小设置了三个阈值,如果经过大量试验后,可以固定一个适合的阈值。float sum = 0;//依次画出每条线段for (size_t i = 0; i < lines.size(); i++){float rho = lines[i][0];float theta = lines[i][1];Point pt1, pt2;//cout << theta << endl;double a = cos(theta), b = sin(theta);double x0 = a*rho, y0 = b*rho;pt1.x = cvRound(x0 + 1000 * (-b));pt1.y = cvRound(y0 + 1000 * (a));pt2.x = cvRound(x0 - 1000 * (-b));pt2.y = cvRound(y0 - 1000 * (a));//只选角度最小的作为旋转角度sum += theta;line(dstImage, pt1, pt2, Scalar(55, 100, 195), 1, LINE_AA); //Scalar函数用于调节线段颜色imshow("直线探测效果图", dstImage);}float average = sum / lines.size(); //对所有角度求平均,这样做旋转效果会更好cout << "average theta:" << average << endl;double angle = DegreeTrans(average) - 90;rotateImage(dstImage, dst, angle);//imshow("直线探测效果图2", dstImage);return angle;
}void ImageRecify(const char* pInFileName, const char* pOutFileName)
{double degree;Mat src = imread(pInFileName);imshow("原始图", src);Mat dst;//倾斜角度矫正degree = CalcDegree(src, dst);rotateImage(src, dst, degree);cout << "angle:" << degree << endl;imshow("旋转调整后", dst);Mat resulyImage = dst(Rect(0, 0, dst.cols, 500)); //根据先验知识,估计好文本的长宽,再裁剪下来imshow("裁剪之后", resulyImage);imwrite("recified.jpg", resulyImage);
}int main()
{ImageRecify("31.png", "FinalImage.jpg");waitKey();return 0;
}

opencv4.x

#include "opencv2/imgproc.hpp"
#include "opencv2/highgui.hpp"
#include <iostream>
using namespace cv;
using namespace std;// 直线上点的个数
#define HOUGH_VOTE 50//度数转换
double DegreeTrans(double theta)
{double res = theta / CV_PI * 180;return res;
}//逆时针旋转图像degree角度(原尺寸)    
void rotateImage(Mat src, Mat& img_rotate, double degree)
{//旋转中心为图像中心    Point2f center;center.x = float(src.cols / 2.0);center.y = float(src.rows / 2.0);int length = 0;length = sqrt(src.cols*src.cols + src.rows*src.rows);//计算二维旋转的仿射变换矩阵  Mat M = getRotationMatrix2D(center, degree, 1);warpAffine(src, img_rotate, M, Size(length, length), 1, 0, Scalar(255, 255, 255));//仿射变换,背景色填充为白色  
}//通过霍夫变换计算角度
double CalcDegree(const Mat &srcImage, Mat &dst)
{Mat midImage, dstImage;Canny(srcImage, midImage, 50, 200, 3);cvtColor(midImage, dstImage, COLOR_GRAY2BGR);//通过霍夫变换检测直线vector<Vec2f> lines;HoughLines(midImage, lines, 1, CV_PI / 180, HOUGH_VOTE);//第5个参数就是阈值,阈值越大,检测精度越高//cout << lines.size() << endl;//由于图像不同,阈值不好设定,因为阈值设定过高导致无法检测直线,阈值过低直线太多,速度很慢//所以根据阈值由大到小设置了三个阈值,如果经过大量试验后,可以固定一个适合的阈值。float sum = 0;//依次画出每条线段for (size_t i = 0; i < lines.size(); i++){float rho = lines[i][0];float theta = lines[i][1];Point pt1, pt2;//cout << theta << endl;double a = cos(theta), b = sin(theta);double x0 = a*rho, y0 = b*rho;pt1.x = cvRound(x0 + 1000 * (-b));pt1.y = cvRound(y0 + 1000 * (a));pt2.x = cvRound(x0 - 1000 * (-b));pt2.y = cvRound(y0 - 1000 * (a));//只选角度最小的作为旋转角度sum += theta;line(dstImage, pt1, pt2, Scalar(55, 100, 195), 1, LINE_AA); //Scalar函数用于调节线段颜色imshow("直线探测效果图", dstImage);}float average = sum / lines.size(); //对所有角度求平均,这样做旋转效果会更好cout << "average theta:" << average << endl;double angle = DegreeTrans(average) - 90;rotateImage(dstImage, dst, angle);//imshow("直线探测效果图2", dstImage);return angle;
}void ImageRecify(const char* pInFileName, const char* pOutFileName)
{double degree;Mat src = imread(pInFileName);imshow("原始图", src);Mat dst;//倾斜角度矫正degree = CalcDegree(src, dst);rotateImage(src, dst, degree);cout << "angle:" << degree << endl;imshow("旋转调整后", dst);Mat resulyImage = dst(Rect(0, 0, dst.cols, 1000)); //根据先验知识,估计好文本的长宽,再裁剪下来imshow("裁剪之后", resulyImage);imwrite("recified.jpg", resulyImage);
}int main()
{ImageRecify("test.jpg", "FinalImage.jpg");waitKey();return 0;
}

4.检测矩形轮廓 + 角度 + 旋转

#include "opencv2/imgproc.hpp"
#include "opencv2/highgui.hpp"
#include <iostream>
using namespace cv;
using namespace std;
#include <algorithm>bool x_sort(const Point2f & m1, const Point2f & m2)
{return m1.x < m2.x;
}//第一个参数:输入图片名称;第二个参数:输出图片名称
void GetContoursPic(const char* pSrcFileName, const char* pDstFileName)
{Mat srcImg = imread(pSrcFileName);imshow("原始图", srcImg);Mat gray, binImg;//灰度化cvtColor(srcImg, gray, COLOR_RGB2GRAY);imshow("灰度图", gray);//二值化threshold(gray, binImg, 150, 200, CV_THRESH_BINARY);imshow("二值化", binImg);vector<Point>  contours;vector<vector<Point> > f_contours;//注意第5个参数为CV_RETR_EXTERNAL,只检索外框  findContours(binImg, f_contours, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_NONE); //找轮廓int max_area = 0;int index;for (int i = 0; i < f_contours.size(); i++){double tmparea = fabs(contourArea(f_contours[i]));if (tmparea > max_area){index = i;max_area = tmparea;}}contours = f_contours[index];CvBox2D rect = minAreaRect(Mat(contours));float angle = rect.angle;cout << "before angle : " << angle << endl;if (angle < -45)angle = (90 + angle);elseangle = -angle;cout << "after angle : " << angle << endl;//新建一个感兴趣的区域图,大小跟原图一样大  Mat RoiSrcImg(srcImg.rows, srcImg.cols, CV_8UC3); //注意这里必须选CV_8UC3RoiSrcImg.setTo(0); //颜色都设置为黑色  //imshow("新建的ROI", RoiSrcImg);//对得到的轮廓填充一下  drawContours(binImg, f_contours, 0, Scalar(255), CV_FILLED);//抠图到RoiSrcImgsrcImg.copyTo(RoiSrcImg, gray);//再显示一下看看,除了感兴趣的区域,其他部分都是黑色的了  namedWindow("RoiSrcImg", 1);imshow("RoiSrcImg", RoiSrcImg);//创建一个旋转后的图像  Mat RatationedImg(RoiSrcImg.rows, RoiSrcImg.cols, CV_8UC1);RatationedImg.setTo(0);//对RoiSrcImg进行旋转  Point2f center = rect.center;  //中心点  Mat M2 = getRotationMatrix2D(center, angle, 1);//计算旋转加缩放的变换矩阵 warpAffine(RoiSrcImg, RatationedImg, M2, RoiSrcImg.size(), 1, 0, Scalar(0));//仿射变换 imshow("旋转之后", RatationedImg);
}void main()
{GetContoursPic("34.png", "FinalImage.jpg");waitKey();
}

opencv4.x

#include "opencv2/imgproc.hpp"
#include "opencv2/highgui.hpp"
#include <opencv2/imgproc/types_c.h>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <iostream>using namespace cv;
using namespace std;
#include <algorithm>bool x_sort(const Point2f & m1, const Point2f & m2)
{return m1.x < m2.x;
}//第一个参数:输入图片名称;第二个参数:输出图片名称
void GetContoursPic(const char* pSrcFileName, const char* pDstFileName)
{Mat srcImg = imread(pSrcFileName);imshow("原始图", srcImg);Mat gray, binImg;//灰度化cvtColor(srcImg, gray, COLOR_RGB2GRAY);imshow("灰度图", gray);//二值化threshold(gray, binImg, 150, 200, cv::THRESH_BINARY);imshow("二值化", binImg);vector<Point>  contours;vector<vector<Point> > f_contours;//注意第5个参数为CV_RETR_EXTERNAL,只检索外框  findContours(binImg, f_contours, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_NONE); //找轮廓int max_area = 0;int index;for (int i = 0; i < f_contours.size(); i++){double tmparea = fabs(contourArea(f_contours[i]));if (tmparea > max_area){index = i;max_area = tmparea;}}contours = f_contours[index];RotatedRect rect = minAreaRect(Mat(contours));float angle = rect.angle;cout << "before angle : " << angle << endl;if (angle < -45)angle = (90 + angle);elseangle = -angle;cout << "after angle : " << angle << endl;//新建一个感兴趣的区域图,大小跟原图一样大  Mat RoiSrcImg(srcImg.rows, srcImg.cols, CV_8UC3); //注意这里必须选CV_8UC3RoiSrcImg.setTo(0); //颜色都设置为黑色  //imshow("新建的ROI", RoiSrcImg);//对得到的轮廓填充一下  drawContours(binImg, f_contours, 0, Scalar(255), cv::FILLED);//抠图到RoiSrcImgsrcImg.copyTo(RoiSrcImg, gray);//再显示一下看看,除了感兴趣的区域,其他部分都是黑色的了  namedWindow("RoiSrcImg", 1);imshow("RoiSrcImg", RoiSrcImg);//创建一个旋转后的图像  Mat RatationedImg(RoiSrcImg.rows, RoiSrcImg.cols, CV_8UC1);RatationedImg.setTo(0);//对RoiSrcImg进行旋转  Point2f center = rect.center;  //中心点  Mat M2 = getRotationMatrix2D(center, angle, 1);//计算旋转加缩放的变换矩阵 warpAffine(RoiSrcImg, RatationedImg, M2, RoiSrcImg.size(), 1, 0, Scalar(0));//仿射变换 imshow("旋转之后", RatationedImg);imwrite("recified.jpg", RatationedImg);
}int main()
{GetContoursPic("test.jpg", "FinalImage.jpg");waitKey();return 0;
}

参考

  • 榴莲小怪兽 opencv-图片矫正
  • OpenCV利用透视变换矫正图像

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/81727.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【3dsmax】练习——制作碗椅

目录 目标 步骤 一、制作主体部分 二、制作靠垫部分 三、制作支架部分 目标 制作如下图所示的碗椅 步骤 一、制作主体部分 1. 首先创建一个球体 2. 转换为可编辑多边形&#xff0c;然后切换到边层级&#xff0c;选中球体上部的所有边&#xff0c;然后删除 3. 通过“壳…

Mybatis的动态SQL分页及特殊字符的使用

目录 一、分页 ( 1 ) 应用场景 ( 2 ) 使用 二、特殊字符 2.1 介绍 2.2 使用 给我们带来的收获 一、分页 分页技术的出现是为了解决大数据量展示、页面加载速度、页面长度控制和用户体验等问题。通过将数据分成多个页面&#xff0c;用户可以根据需求选择查看不同页的数据…

很干的 Nginx

&#x1f3a8; 前言 本篇文章有些概念性的东西&#xff0c;是结合自己的理解表达出来的&#xff0c;可能有些理解不到位的地方。希望多多指教&#xff0c;谢谢大家。 红包献上 &#x1f9e7;&#x1f9e7;&#x1f9e7;&#x1f9e7;&#x1f9e7;&#x1f9e7;&#x1f9e7;…

行式存储与列式存储

1.概述 数据处理大致可分为两大类&#xff0c;联机事务处理OLTP(on-line transaction processing) 和联机分析处理OLAP(on-line analytical processing)。 OLTP是传统关系型数据库的主要应用&#xff0c;用来执行一些基本的、日常的事务处理&#xff0c;比如数据库记录的增、删…

Day14-2-NodeJS后端开发流程

Day14-NodeJS后端工程化流程 一 apifox工具 apifox是目前最好的接口调试工具 1 环境搭建 安装登录创建项目接口里面创建对应文件夹在指定的文件夹里面创建接口2 GET请求 1 apifox发送GET请求 2 后端接收GET请求 router.get("/getUserinfo"

恒运资本大盘走势:北向资金是什么?北向资金流出对A股有何影响?

在股票商场中&#xff0c;常常报导北向资金买入和卖出&#xff0c;那么&#xff0c;北向资金是什么意思&#xff1f;北向资金流出对A股有何影响&#xff1f;为大家预备了相关内容&#xff0c;以供参考。 恒运资本平台&#xff08;百度搜索恒运资本&#xff09;是深圳引力私募基…

探索未知世界:桌面端3D GIS引领地理信息新时代

近年来&#xff0c;桌面端的三维地理信息系统&#xff08;3D GIS&#xff09;在地理信息领域迎来了显著的发展&#xff0c;为我们带来了更深入、更丰富的地理空间认知和数据分析体验。从城市规划到环境保护&#xff0c;从资源管理到应急响应&#xff0c;桌面端的3D GIS正逐渐成…

ResNet18云空间部署

1-6步骤可以在云空间运行&#xff0c;也可以在本地运行&#xff1b;步骤7 在云空间运行。 1.编译ONNX模型 本章以 resnet18.onnx 为例, 介绍如何编译迁移一个onnx模型至BM1684X TPU平台运行。 该模型来自onnx的官网: models/vision/classification/resnet/model/resnet18-v1…

深度学习处理文本(NLP)

文章目录 引言1. 反向传播1.1 实例流程实现1.2 前向传播1.3 计算损失1.4 反向传播误差1.5 更新权重1.6 迭代1.7 BackPropagation & Adam 代码实例 2. 优化器 -- Adam2.1 Adam解析2.2 代码实例 3. NLP任务4. 神经网络处理文本4.1 step1 字符数值化4.2 step 2 矩阵转化为向量…

solidity0.8.0的应用案例11:透明代理合约

选择器冲突 智能合约中,函数选择器(selector)是函数签名的哈希的前4个字节。例如mint(address account)的选择器为bytes4(keccak256("mint(address)")),也就是0x6a627842. 由于函数选择器仅有4个字节,范围很小,因此两个不同的函数可能会有相同的选择器,例如…

CnetSDK .NET OCR SDK Crack

CnetSDK .NET OCR SDK Crack CnetSDK.NET OCR库SDK是一款高度准确的.NET OCR扫描仪软件&#xff0c;用于使用手写、文本和其他符号等图像进行字符识别。它是一款.NET OCR库软件&#xff0c;使用Tesseract OCR引擎技术&#xff0c;可将字符识别准确率提高99%。通过将此.NET OCR扫…

智慧党建VR虚拟3D数字化展厅发展和传承传统文化

三维全景虚拟现实技术应用在虚拟展馆中&#xff0c;主要是通过全景照片的虚拟与建模&#xff0c;营造出三维虚拟仿真的场景&#xff0c;从而结合展馆展示的需求&#xff0c;营造出更加有效的氛围&#xff0c;起到优化展示效果的作用。 三维全景虚拟现实技术的应用&#xff0c;能…