时序预测 | MATLAB实现PSO-KELM粒子群算法优化核极限学习机时间序列预测(含KELM、ELM等对比)

时序预测 | MATLAB实现PSO-KELM粒子群算法优化核极限学习机时间序列预测(含KELM、ELM等对比)

目录

    • 时序预测 | MATLAB实现PSO-KELM粒子群算法优化核极限学习机时间序列预测(含KELM、ELM等对比)
      • 预测效果
      • 基本介绍
      • 模型介绍
      • 程序设计
      • 参考资料
      • 致谢

预测效果

1
2

基本介绍

MATLAB实现PSO-KELM粒子群算法优化核极限学习机时间序列预测(含KELM、ELM等对比)(完整源码和数据)

模型介绍

PSO-KELM,常用于时间序列预测任务。
PSO是一种基于群体智能的优化算法,它模拟了鸟群觅食的行为。在PSO中,每个个体被称为粒子,代表了解空间中的一个候选解。粒子通过在解空间中搜索来寻找最优解,同时根据个体最优和全局最优的信息进行调整和更新。PSO算法通过迭代更新粒子的位置和速度来逐步优化解的质量。
PSO-KELM的时间序列预测步骤如下:
准备时间序列数据集,将其划分为训练集和测试集。
初始化PSO算法的粒子群,并随机初始化粒子的位置和速度。
对于每个粒子,使用KELM算法,其中隐藏层的连接权重和偏置通过PSO进行优化。
根据训练得到的模型,对测试集进行预测。
评估预测结果的准确性。
根据预测准确性和PSO的优化目标,更新粒子的速度和位置。
重复步骤3至步骤6,直到达到预定的迭代次数或满足停止准则。
根据最优的粒子位置得到最终的连接权重和偏置,用于进行时间序列的预测。
需要注意的是,PSO-KELM算法的性能和结果可能会受到参数设置的影响,例如粒子数、迭代次数、网络的隐藏层节点数等。因此,在实际应用中需要根据具体问题进行调优和参数选择。

程序设计

  • 完整程序和数据下载地址方式:订阅《智能学习》专栏,同时获取专栏内程序和数据1份,订阅后两天内私信博主获取程序和数据,专栏外只能获取该程序。
%% 各算法对比
clc;clear;close all
%%Positions = initialization(SearchAgents_no, dim, ub, lb);%%  用于记录迭代曲线
Convergence_curve = zeros(1, Max_iteration);
%%  循环计数器
iter = 0;%%  优化算法主循环
while iter < Max_iteration           % 对迭代次数循环for i = 1 : size(Positions, 1)   % 遍历Flag4ub = Positions(i, :) > ub;Flag4lb = Positions(i, :) < lb;% 若的位置在最大值和最小值之间,则位置不需要调整,若超出最大值,最回到最大值边界% 若超出最小值,最回答最小值边界Positions(i, :) = (Positions(i, :) .* (~(Flag4ub + Flag4lb))) + ub .* Flag4ub + lb .* Flag4lb;   % 计算适应度函数值
%         Positions(i, 2) = round(Positions(i, 2));
%         fitness = fical(Positions(i, :));fitness = fobj(Positions(i, :));% 更新 Alpha, Beta, Deltaif fitness < Alpha_score           % 如果目标函数值小if fitness > Alpha_score && fitness > Beta_score && Delta_score = fitness;                                                 % 则将Delta的目标函数值更新为最优目标函数值Delta_pos = Positions(i, :);                                           % 同时更新Delta的位置endend% 线性权重递减wa = 2 - iter * ((2) / Max_iteration);    % 更新搜索群的位置for i = 1 : size(Positions, 1)      % 遍历每个for j = 1 : size(Positions, 2)  % 遍历每个维度% 包围猎物,位置更新r1 = rand; % r1 is a random number in [0,1]r2 = rand; % r2 is a random number in [0,1]A1 = 2 * wa * r1 - wa;   % 计算系数A,Equation (3.3)C1 = 2 * r2;             % 计算系数C,Equation (3.4)% Alpha 位置更新D_alpha = abs(C1 * Alpha_pos(j) - Positions(i, j));   % Equation (3.5)-part 1X1 = Alpha_pos(j) - A1 * D_alpha;                     % Equation (3.6)-part 1r1 = rand; % r1 is a random number in [0,1]r2 = rand; % r2 is a random number in [0,1]A2 = 2 * wa * r1 - wa;   % 计算系数A,Equation (3.3)C2 = 2 *r2;              % 计算系数C,Equation (3.4)% Beta 位置更新D_beta = abs(C2 * Beta_pos(j) - Positions(i, j));    % Equation (3.5)-part 2X2 = Beta_pos(j) - A2 * D_beta;                      % Equation (3.6)-part 2       r1 = rand;  % r1 is a random number in [0,1]r2 = rand;  % r2 is a random number in [0,1]A3 = 2 *wa * r1 - wa;     % 计算系数A,Equation (3.3)C3 = 2 *r2;               % 计算系数C,Equation (3.4)% Delta 位置更新D_delta = abs(C3 * Delta_pos(j) - Positions(i, j));   % Equation (3.5)-part 3X3 = Delta_pos(j) - A3 * D_delta;                     % Equation (3.5)-part 3% 位置更新Positions(i, j) = (X1 + X2 + X3) / 3;                 % Equation (3.7)endend% 更新迭代器iter = iter + 1;    Convergence_curve(iter) = Alpha_score;curve(iter)=sum(Convergence_curve)/iter;disp(['第',num2str(iter),'次迭代'])disp(['current iteration is: ',num2str(iter), ', best fitness is: ', num2str(Alpha_score)]);
end%%  记录最佳参数
% best_lr = Alpha_pos(1, 1);
% best_hd = Alpha_pos(1, 2);
% best_l2 = Alpha_pos(1, 3);
end
function result(true_value,predict_value,type)
disp(type)
rmse=sqrt(mean((true_value-predict_value).^2));
disp(['根均方差(RMSE):',num2str(rmse)])
mae=mean(abs(true_value-predict_value));
disp(['平均绝对误差(MAE):',num2str(mae)])
mape=mean(abs((true_value-predict_value)./true_value));
disp(['平均相对百分误差(MAPE):',num2str(mape*100),'%'])
r2 = R2(predict_value, true_value);
disp(['R平方决定系数(MAPE):',num2str(r2)])
nse = NSE(predict_value, true_value);
disp(['纳什系数(NSE):',num2str(nse)])fprintf('\n')

参考资料

[1] https://blog.csdn.net/kjm13182345320?spm=1010.2135.3001.5343
[2] https://mianbaoduo.com/o/bread/mbd-YpiamZpq
[3] SI Y W,YIN J. OBST-based segmentation approach to financial time series[J]. Engineering Applications of Artificial Intelligence,2013,26( 10) : 2581-2596.
[4] YUAN X,CHEN C,JIANG M,et al. Prediction Interval of Wind Power Using Parameter Optimized Beta Distribution Based LSTM Model[J]. Applied Soft Computing,2019,82:105550.143

致谢

  • 大家的支持是我写作的动力!
  • 感谢大家订阅,记得备注!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/81913.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【AWS】安装配置适用于 Eclipse 的 AWS 工具包

目录 0.环境 1.步骤 1&#xff09;安装Eclipse 2&#xff09;安装AWS工具包 ① 在这个路径下点开安装软件的界面 ② 点击【Add】打开添加窗口 ③ 输入aws的工具包地址 ④ 勾选需要的工具&#xff0c;点击【Next】 ⑤ 将要安装的工具&#xff0c;点击【Next】 ⑥ 选择接受…

当 SQL Server(mssql-jdbc) 遇上 BigDecimal

需求背景 系统对接了外部系统&#xff0c;调用外部系统的接口需要付费&#xff0c;一个接口一次调用付费 0.03 元 同一个月内&#xff0c;同一个接口最高付费 25 元 统计每个月的付费情况 需求清楚了不&#xff1f;不清楚&#xff1f; 给大家举个案例 这下明白了吧 明白了需求&…

一文速学-让神经网络不再神秘,一天速学神经网络基础-激活函数(二)

前言 思索了很久到底要不要出深度学习内容&#xff0c;毕竟在数学建模专栏里边的机器学习内容还有一大半算法没有更新&#xff0c;很多坑都没有填满&#xff0c;而且现在深度学习的文章和学习课程都十分的多&#xff0c;我考虑了很久决定还是得出神经网络系列文章&#xff0c;…

企业工程项目管理系统源码(三控:进度组织、质量安全、预算资金成本、二平台:招采、设计管理) em

​ 工程项目管理软件&#xff08;工程项目管理系统&#xff09;对建设工程项目管理组织建设、项目策划决策、规划设计、施工建设到竣工交付、总结评估、运维运营&#xff0c;全过程、全方位的对项目进行综合管理 工程项目各模块及其功能点清单 一、系统管理 1、数据字典&#…

【Ubuntu20.04安装Nvidia驱动、CUDA和CUDNN】

Ubuntu20.04安装Nvidia驱动、CUDA和CUDNN 1 Nvidia驱动安装1.1 安装1.2 安装Nvidia可能会遇到的问题1.2.1 NVIDIA 驱动与 Nouveau 驱动不兼容1.2.2 ERROR: Unable to find the development tool cc 2 CUDA安装2.1 下载和安装2.2 配置CUDA环境 3 安装CUDNN4 切换CUDA版本 1 Nvid…

Java基础之IO流File类创建及删除

1.File类概述及构造方法 2.File类创建功能 文件创建成功&#xff01; 如果文件不存在&#xff0c;就创建文件&#xff0c;并返回true 如果文件存在&#xff0c;就不创建文件&#xff0c;并返回false 如果文件夹不存在&#xff0c;就创建文件夹&#xff0c;并返回true 如果文件…

【【Verilog典型电路设计之CORDIC算法的Verilog HDL 实现】】

Verilog典型电路设计之CORDIC算法的Verilog HDL 实现 典型电路设计之CORDIC算法的Verilog HDL 实现 坐标旋转数字计算机CORDIC(Coordinate Rotation Digital Computer)算法&#xff0c;通过移位和加减运算&#xff0c;能递归计算常用函数值&#xff0c;如sin&#xff0c;cos,…

Elasticsearch 集成---框架集成SpringData-集成测试-索引操作

1.Spring Data 框架介绍 Spring Data 是一个用于简化数据库、非关系型数据库、索引库访问&#xff0c;并支持云服务的 开源框架。其主要目标是使得对数据的访问变得方便快捷&#xff0c;并支持 map-reduce 框架和云计 算数据服务。 Spring Data 可以极大的简化 JPA &a…

如何安装指定版本node.js,安装旧版本node

1、查看当前是否安装node&#xff0c;如果安装了需要先卸载当前版本node 搜索控制面板 -> 找到程序/卸载程序 -> 在里面找到node -> 然后右击卸载 2、卸载完成后就要安装其他版本得node.js 找到想要安装的对应版本&#xff0c;安装.msi格式的安装包 注&#xff…

矢量调制分析基础

前言 本文介绍VSA 的矢量调制分析和数字调制分析测量能力。某些扫频调谐频谱分析仪也能通过使用另外的数字无线专用软件来提供数字调制分析。然而&#xff0c;VSA 通常在调制格式和解调算法配置等方面提供更大的测量灵活性&#xff0c;并提供更多的数据结果和轨迹轨迹显示。本…

mysql--数据库的操作

数据库&#xff0c;是数据存储的最大单元。 1 创建数据库 create database mydatabase; 每次创建数据库的时候&#xff0c;都会多一个文件夹&#xff0c;关系型数据库是存储在磁盘当中的&#xff0c;所以这时候可以查看新建的数据库 2 指定字符集 MySQL中的字符集转换过程 制…

selenium案例之RAM 用户登录 aliyun

文章目录 0x00 Selenium0x01 整体流程 思路1.1 打开浏览器并且访问 登录页面 url: https://signin.aliyun.com/login.htm#/main1.2 定位 "用户名" input 和 "下一步" button 点击下一步1.3 定位 "密码" input 和 "登录" button 点击登…