import numpy as np matches = np.array([ [0, 1, 0, 1, 1, 1], # 1队 [0, 0, 0, 1, 1, 1], # 2队 [1, 1, 0, 1, 0, 0], # 3队 [0, 0, 0, 0, 1, 1], # 4队 [0, 0, 1, 0, 0, 1], # 5队 [0, 0, 1, 0, 0, 0] # 6队
], dtype=int) n = matches.shape[0]
closure = matches.copy()
for k in range(n): for i in range(n): for j in range(n): closure[i, j] = closure[i, j] or (closure[i, k] and closure[k, j]) strength = closure.sum(axis=1) ranking = np.argsort(-strength) for i, rank in enumerate(ranking): print(f"{chr(65 + rank)}队 排名 {i + 1}")import numpy as np
from scipy.sparse import csr_matrix edges = [ (0, 1), (0, 3), (0, 4), (0, 5), # 1队胜 (1, 3), (1, 4), (1, 5), # 2队胜 (2, 0), (2, 1), (2, 3), # 3队胜 (3, 4), (3, 5), # 4队胜 (4, 2), (4, 5), # 5队胜 (5, 2) # 6队胜
] num_teams = 6 row_ind = []
col_ind = []
data = []
for u, v in edges: row_ind.append(u) col_ind.append(v) data.append(1)
adj_matrix = csr_matrix((data, (row_ind, col_ind)), shape=(num_teams, num_teams)) adj_matrix_T = adj_matrix.T d = 0.85
out_degree = np.array(adj_matrix_T.sum(axis=1)).flatten()
out_degree[out_degree == 0] = 1
M = adj_matrix_T.multiply(1.0 / out_degree).tocsr()
M = M + (1 - d) / num_teams * csr_matrix(np.ones((num_teams, num_teams))) R = np.ones(num_teams) / num_teams num_iterations = 100
for _ in range(num_iterations): R = R.dot(M.toarray()) pagerank_ranking = np.argsort(-R) for i, rank in enumerate(pagerank_ranking): print(f"{chr(65 + rank)}队 PageRank排名 {i + 1}")print("学号:3008")
结果如下图所示