全流程R语言Meta分析核心技术

​Meta分析是针对某一科研问题,根据明确的搜索策略、选择筛选文献标准、采用严格的评价方法,对来源不同的研究成果进行收集、合并及定量统计分析的方法,最早出现于“循证医学”,现已广泛应用于农林生态,资源环境等方面。R语言拥有完整有效的数据处理、统计分析与保存机制,可以对数据直接进行分析和显示,命令格式简单、结果可读性强,包含众多针对Meta分析软件包,是进行Meta整合分析及评价的有效平台。从文献计量分析研究热点变化,寻找科学问题、R-Meta多手段全流程分析与Meta高级绘图、多层次分层嵌套模型构建与Meta回归诊断、贝叶斯网络、MCMC参数优化及不确定性分析、Meta数据缺失值处理的六种方法与结果可靠性分析、Meta加权机器学习与非线性Meta分析等方面讲解,每一部分结合多个典型案例实践

原文链接:全流程R语言Meta分析核心技术

专题一Meta分析的选题与检索

1、Meta分析的选题与文献检索

1)什么是Meta分析

2)Meta分析的选题策略

3)精确检索策略,如何检索全、检索准

4)文献的管理与清洗,如何制定文献纳入排除标准

5)文献数据获取技巧,研究课题探索及科学问题的提出

6)文献计量分析CiteSpace、VOSViewer、R bibliometrix及研究热点分析

​专题二Meta分析与R语言数据清洗及统计方法

2、Meta分析的常用软件/R语言基础及统计学基础

1)R语言做Meta分析的优势及其《Nature》、《Science》经典案例应用

2)R语言基本操作与数据清洗方法

3)统计学基础和常用统计量计算(sd\se\CI)、三大检验(T检验、卡方检验和F检验)

4)传统统计学与Meta分析的异同

5)R语言Meta分析常用包及相关插件讲解

从自编程计算到调用Meta包(meta、metafor、dmetar、esc、metasens、metamisc、meta4diag、gemtc、robvis、netmeta、brms等),全程分析如何进行meta计算、meta诊断、贝叶斯meta、网状meta、亚组分析、meta回归及作图。

​专题三R语言Meta分析与作图

3、R语言Meta效应值计算

1)R语言Meta分析的流程

2)各类meta效应值计算、自编程序和调用函数的对比

连续资料的lnRR、MD与SMD

分类资料的RR和OR

3)R语言meta包和metafor包的使用

4)如何用R基础包和ggplot2绘制漂亮的森林图

​专题四R语言Meta回归分析

4、R语言Meta分析与混合效应模型(分层模型)构建

1)Meta分析的权重计算

2)Meta分析中的固定效应、随机效应

3)如何对Meta模型进行统计检验和构建嵌套模型、分层模型(混合效应)

4)Meta回归和普通回归、混合效应模型的对比及结果分析

5)使用Rbase和ggplot2绘制Meta回归图

​专题五R语言Meta诊断分析

5、R语言Meta诊断进阶

1)Meta诊断分析(t2、I2、H2、R2、Q、QE、QM等统计量)

2)异质性检验及发表偏移、漏斗图、雷达图、发表偏倚统计检验

3)敏感性分析、增一法、留一法、增一法、Gosh图

4)风险分析、失安全系数计算

5)Meta模型比较和模型的可靠性评价

6)Bootstrap重采样方法评估模型的不确定性

7)如何使用多种方法对文献中的SD、样本量等缺失值的处理

​专题六R语言Meta分析的不确定性

6、R语言Meta分析的不确定性

1)网状Meta分析

2)贝叶斯理论和蒙特拉罗马尔可夫链MCMC

3)如何使用MCMC优化普通回归模型和Meta模型参数

4)R语言贝叶斯工具Stan、JAGS和brms

5)贝叶斯Meta分析及不确定性分析

​专题七机器学习在Meta分析中的应用

7、机器学习在Meta分析中的应用

1)机器学习基础以及Meta机器学习的优势

2)Meta加权随机森林(MetaForest)的使用

3)使用Meta机器学习和传统机器学习对文献中的大数据训练与测试

4)如何判断Meta机器学习使用随机效应还是固定效应以及超参数的优化

5)使用Meta机器学习进行驱动因子分析、偏独立分析PDP

相关推荐阅读: 基于Citespace、vosviewer、R语言的文献计量学可视化分析技术及全流程文献可视化SCI论文高效写作

“全面助力AI科研、教学与实践技能”夏令营

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/83575.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Verilog 实现超声波测距

Verilog 实现超声波测距 教学视频: https://www.bilibili.com/video/BV1Ve411x75W?p33&spm_id_frompageDriver&vd_source19ae31dff4056e52d2729a4ca212602b 超声波测距原理 参考资料:STM32的超声波测距程序_超声波测距stm32程序_VaderZhang的…

基于Java+SpringBoot+Vue前后端分离在线考试与学习交流网页平台设计和实现

博主介绍:✌全网粉丝30W,csdn特邀作者、博客专家、CSDN新星计划导师、Java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 🍅文末获取源码联系🍅 👇🏻 精彩专…

常见前端面试之VUE面试题汇总七

20. 对 vue 设计原则的理解 1.渐进式 JavaScript 框架:与其它大型框架不同的是,Vue 被设计 为可以自底向上逐层应用。Vue 的核心库只关注视图层,不仅易于上 手,还便于与第三方库或既有项目整合。另一方面,当与现代化的…

扫雷小游戏

目录 一.扫雷小游戏 二.游戏主体一览 ​编辑 三.模块化设计扫雷游戏 3.1打印欢迎菜单 3.2创建两个二维数组 3.3棋盘稍加修改 3.4布置雷 3.5排查雷 四.游戏总体代码 4.1game.h头文件 4.2game.c函数实现源文件 4.3游戏main函数主体 五.游戏效果图 一.扫雷小游戏 这是…

Verilog 实现状态机自动售卖机

Verilog 实现状态机自动售卖机 教学视频:https://www.bilibili.com/video/BV1Ve411x75W?p33&spm_id_frompageDriver&vd_source19ae31dff4056e52d2729a4ca212602b 功能需求 使用1元、2元、5元面值的纸币进行支付,获取6元的物品,不设…

基于Jenkins自动打包并部署Tomcat环境

基于上一章创建部署 Linux下Jenkins安装 (最新)_学习新鲜事物的博客-CSDN博客 传统网站部署的流程 在运维过程中,网站部署是运维的工作之一。传统的网站部署的流程大致分为:需求分 析-->原型设计-->开发代码-->提交代码--&g…

python+django+mysql旅游景点推荐系统-前后端分离(源码+文档)

系统主要采用Python开发技术和MySQL数据库开发技术以及基于OpenCV的图像识别。系统主要包括系统首页、个人中心、用户管理、景点信息管理、景点类型管理、景点门票管理、在线反馈、系统管理等功能,从而实现智能化的旅游景点推荐方式,提高旅游景点推荐的效…

GEE/PIE遥感大数据处理与典型案例

随着航空、航天、近地空间等多个遥感平台的不断发展,近年来遥感技术突飞猛进。由此,遥感数据的空间、时间、光谱分辨率不断提高,数据量也大幅增长,使其越来越具有大数据特征。对于相关研究而言,遥感大数据的出现为其提…

Redis笔记——(狂神说)待续

Nosql概述 为什么要用NoSql? 1、单机mysql的年代:90年代,网站访问量小,很多使用静态网页html写的,服务器没压力。 当时瓶颈是:1)数据量太大一个机器放不下。2)数据的索引(BTree),一个机器内存也…

html动态爱心代码【四】(附源码)

目录 前言 特效 完整代码 总结 前言 情人节马上就要到了,为了帮助大家高效表白,下面再给大家带来了实用的HTML浪漫表白代码(附源码)背景音乐,可用于520,情人节,生日,表白等场景,可直接使用。…

nrm管理源仓库及发布私人npm包

使用nrm管理源及切换源仓库 1.安装nrm源管理器 npm install nrm -g2.查看目前现有的源仓库 通过 nrm ls 查看现有的源 nrm ls 输出:这是目前现有的源 3.切换不同的源 可以通过 nrm use xxx(源仓库名)来切换不同的源地址 nrm use taobao…

探索pytest:Python自动化测试的新境界

在当今的软件开发领域,测试已经不仅仅是一个简单的步骤,而是确保软件质量的核心环节。Python,作为全球最受欢迎的编程语言之一,拥有丰富的测试框架和工具。而在这其中,pytest无疑是最受欢迎和最具影响力的一个。本文将…