STM32--SPI通信与W25Q64(1)

文章目录

  • 前言
  • SPI通信
    • 硬件电路
    • 移位过程
  • SPI时序
    • 起始与终止条件
    • 交换一个字节
  • W25Q64
    • 硬件电路
    • 框图
  • FLASH操作注意事项
  • 软件SPI读写W25Q64

前言

USART串口链接入口

I2C通信链接入口

SPI通信

SPI(Serial Peripheral Interface)是一种高速的、全双工、同步的串行通信协议。通常用于连接主控芯片和外围设备,比如传感器、存储器、显示屏等。SPI使用简单,只需要几根线就可以实现进行通信。
在这里插入图片描述

硬件电路

在这里插入图片描述
主要线路:

SCLK(时钟信号):由主设备产生,用于同步数据传输的时钟信号。
MOSI(主设备输出从设备输入):主设备将数据发送给从设备的数据线。
MISO(主设备输入从设备输出):从设备将数据发送给主设备的数据线。
SS/CS(片选信号):由主设备控制,用于选择要进行通信的特定设备。

上图中,主机连接着多个从机,但在通信时,只能对一个从机进行SPI通信,会通过选定的从机的片选信号SS从高电平置于低电平(其他没有选中的保持高电平)让主机与其通信。

移位过程

在这里插入图片描述
由于有两条传输数据线,所以SPI通信能做到同时进行发送数据和接收数据的特点。

主机和从机都由主机的波特率发生器控制着时钟信号,实现同步的传输。

首先主机会将移位寄存器的高位通过MOSI数据线传送到从机的移位寄存器的最低位;同时,从机的移位寄存器的最高位会通过MISO数据线传送到主机移位寄存器的最低位。两个移位寄存器将最高位的数据传出之后,移位寄存器就会进行向右移位,因此最低位也会腾出空间,让主机的最高位数据放到从机的最低位,从机的最低位数据放到主机的最低位。以此循环八次,就能将一个字节的数据进行转换了
在这里插入图片描述

SPI时序

起始与终止条件

起始条件:SS从高电平切换到低电平
终止条件:SS从低电平切换到高电平
在这里插入图片描述
这是片选信号,高低电平的切换代表SPI时序的开始和结束。

交换一个字节

交换一个字节(模式0)
CPOL=0:空闲状态时,SCK为低电平
CPHA=0:SCK第一个边沿移入数据,第二个边沿移出数据
在这里插入图片描述
对于SPI通信,由于是同时进行数据传输,所以称之为字节的交换。
交换字节有4个模式,不同之处就在于空闲状态SCK是高电平还是低电平;还有一个从SCK的第一个边沿还是第二个边沿移入数据,这里将介绍模式0的交换,其他同理。

首先这里说的移入数据和移出数据,是指数据的移出会先放在MOSI数据线或者是MISO数据线上,通过一定的时间再把数据放入对方的最低位。所以,只有先移出数据,才能移入数据。
而这里的却从SCK的第一个边沿就移入数据,是因为主机和从机在SS的低边沿就进行将数据移出到MOSI和MISO上,所以会在SCK的高边沿就进行数据的移入,到了SCK的低边沿就将数据移出,依次重复八次,就将一个字节交换成功了

其他模式
交换一个字节(模式1)
CPOL=0:空闲状态时,SCK为低电平
CPHA=1:SCK第一个边沿移出数据,第二个边沿移入数据
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
这是主机向选定的从机发送一个0x06的信号,由于对于从机发送的内容不关心,所以默认为0xFF。所以一般情况下,只有我们选择读取从机的数据,MISO的数据线才会有波形变化。

W25Q64

W25Q64是一款由华邦公司推出的大容量SPI FLASH产品,其容量为64Mb(8MB)。它属于W25Q系列器件,相比普通的串行闪存硬件,在灵活性和性能方面也有更出色的表现。
W25Q64可以用于存储图片数据,字库数据、音频数据以及保存设备运行日志文件等。
该芯片将8M字节的容量分为128块,每个块包含16个扇区,每个扇区有4K字节。支持双路和四路SPI接口,具有较高的数据传输速率。
在这里插入图片描述
存储介质:Nor Flash(闪存)
时钟频率:80MHz / 160MHz (Dual SPI) / 320MHz (Quad SPI)

硬件电路

在这里插入图片描述

引脚功能
VCC、GND电源(2.7~3.6V)
CS(SS)SPI片选
CLK(SCK)SPI时钟
DI(MOSI)SPI主机输出从机输入
DO(MISO)SPI主机输入从机输出
WP写保护
HOLD数据保持

看黄色部分即可,左边是外部引脚接口,右边是芯片电路;

在引脚名上加上一横线表示接通时默认为低电平,VCC与GND连接时会有一个滤波电容进行滤波,还并联一个指示灯表示是否已经通电

HOLD数据保持:相当一个暂停键;当你写入数据一半时,要在别的设备使用SPI通信,那么在当前设备你就可以触发HOLD,当前设备的SPI时序就会保持静止,你就可以使用SPI对别的设备进行使用,当回到当前设备时,HOLD解除,会从禁止的SPI时序进行恢复。

WP写保护:可以通过设置特殊的写保护位来防止数据被修改。有助于保护重要数据免受意外的写操作。

框图

在这里插入图片描述
上面一大部分就是存储区间,将8M字节的容量分为128块,每个块包含16个扇区,每个扇区有4K字节。每个扇区还包括16个的页区,每个页区有256字节,页是最小单位。

而写入和读取都由左下角的SPI命令与控制逻辑的黑盒进行控制;
接着看到上面,是写逻辑和状态寄存器,可以通过状态寄存器来判断是否已经写入数据;
通过高压发电机来对数据进行擦除;
下面是页地址锁存器和字节地址锁存器,会对块区间通过行解码和列解码,可以判定你在哪个页区进行写入和读出;
块区域的下面是一个256字节页缓冲区,数据写入需要一定的时间,会通过缓冲区来进行缓冲。

FLASH操作注意事项

写入操作时
写入操作前,必须先进行写使能
每个数据位只能由1改写为0,不能由0改写为1
写入数据前必须先擦除,擦除后,所有数据位变为1
擦除必须按最小擦除单元进行(扇区)
连续写入多字节时,最多写入一页的数据,超过页尾位置的数据,会回到页首覆盖写入
写入操作结束后,芯片进入忙状态,不响应新的读写操作
读取操作时
直接调用读取时序,无需使能,无需额外操作,没有页的限制,读取操作结束后不会进入忙状态,但不能在忙状态时读取

软件SPI读写W25Q64

OLED代码链接入口

连接方式:
在这里插入图片描述
将数据存储在W25Q64中,通过断电测试它的存储功能;

大体思路:实现SPI通信的时序条件,接着利用SPI通信实现W25Q64时序,最后在主程序实现对FLASH的测试

MySPI.c

#include "stm32f10x.h"                  // Device header//片选电平
void MySPI_W_SS(uint8_t Byte)
{GPIO_WriteBit(GPIOA,GPIO_Pin_4,(BitAction)Byte);
}
//时钟电平
void MySPI_W_SCK(uint8_t Byte)
{GPIO_WriteBit(GPIOA,GPIO_Pin_5,(BitAction)Byte);
}
//主机发送到从机
void MySPI_W_MOSI(uint8_t Byte)
{GPIO_WriteBit(GPIOA,GPIO_Pin_7,(BitAction)Byte);
}
//从机发送到主机
uint8_t MySPI_R_MISO()
{return GPIO_ReadInputDataBit(GPIOA,GPIO_Pin_6);
}//初始化
void MySPI_Init()
{RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA,ENABLE);GPIO_InitTypeDef GPIO_InitStructure;GPIO_InitStructure.GPIO_Mode=GPIO_Mode_Out_PP; //推挽输出GPIO_InitStructure.GPIO_Pin=GPIO_Pin_4|GPIO_Pin_5|GPIO_Pin_7;GPIO_InitStructure.GPIO_Speed=GPIO_Speed_50MHz;GPIO_Init(GPIOA,&GPIO_InitStructure);GPIO_InitStructure.GPIO_Mode=GPIO_Mode_IPU; //上拉输入GPIO_InitStructure.GPIO_Pin=GPIO_Pin_6;GPIO_InitStructure.GPIO_Speed=GPIO_Speed_50MHz;GPIO_Init(GPIOA,&GPIO_InitStructure);MySPI_W_SS(1);MySPI_W_SCK(0);
}
//开始
void MySPI_Start()
{MySPI_W_SS(0);
}
//结束
void MySPI_Stop()
{MySPI_W_SS(1);
}
//交换字节
uint8_t MySPI_SwapByte(uint8_t SendByte)
{uint8_t ReceiveByte=0x00,i;for(i=0;i<8;i++){MySPI_W_MOSI(SendByte&(0x80>>i)); //主发送字节MySPI_W_SCK(1);if(MySPI_R_MISO()==1)ReceiveByte|=(0x80>>i); //主接收字节MySPI_W_SCK(0);}return ReceiveByte;
}

MySPI.h

#ifndef __MYSPI_H__
#define __MYSPI_H__void MySPI_Init();
void MySPI_Start();
void MySPI_Stop();
uint8_t MySPI_SwapByte(uint8_t SendByte);#endif

W25Q64_Ins.h

#ifndef __W25Q64_INS_H
#define __W25Q64_INS_H#define W25Q64_WRITE_ENABLE							0x06
#define W25Q64_WRITE_DISABLE						0x04
#define W25Q64_READ_STATUS_REGISTER_1				0x05
#define W25Q64_READ_STATUS_REGISTER_2				0x35
#define W25Q64_WRITE_STATUS_REGISTER				0x01
#define W25Q64_PAGE_PROGRAM							0x02
#define W25Q64_QUAD_PAGE_PROGRAM					0x32
#define W25Q64_BLOCK_ERASE_64KB						0xD8
#define W25Q64_BLOCK_ERASE_32KB						0x52
#define W25Q64_SECTOR_ERASE_4KB						0x20
#define W25Q64_CHIP_ERASE							0xC7
#define W25Q64_ERASE_SUSPEND						0x75
#define W25Q64_ERASE_RESUME							0x7A
#define W25Q64_POWER_DOWN							0xB9
#define W25Q64_HIGH_PERFORMANCE_MODE				0xA3
#define W25Q64_CONTINUOUS_READ_MODE_RESET			0xFF
#define W25Q64_RELEASE_POWER_DOWN_HPM_DEVICE_ID		0xAB
#define W25Q64_MANUFACTURER_DEVICE_ID				0x90
#define W25Q64_READ_UNIQUE_ID						0x4B
#define W25Q64_JEDEC_ID								0x9F
#define W25Q64_READ_DATA							0x03
#define W25Q64_FAST_READ							0x0B
#define W25Q64_FAST_READ_DUAL_OUTPUT				0x3B
#define W25Q64_FAST_READ_DUAL_IO					0xBB
#define W25Q64_FAST_READ_QUAD_OUTPUT				0x6B
#define W25Q64_FAST_READ_QUAD_IO					0xEB
#define W25Q64_OCTAL_WORD_READ_QUAD_IO				0xE3#define W25Q64_DUMMY_BYTE							0xFF#endif

W25Q64.h

#ifndef __W25Q64_H__
#define __W25Q64_H__void W25Q64_Init();
void W25Q64_ReadID(uint8_t* HID,uint16_t* SID);
void W25Q64_ReadData(uint32_t Address,uint8_t* DataArray,uint16_t Count);
void W25Q64_SectorErase(uint32_t Address);
void W25Q64_PageProgram(uint32_t Address,uint8_t* DataArray,uint16_t Count);#endif

W25Q64.c

#include "stm32f10x.h"                  // Device header
#include "W25Q64_Ins.h"
#include "MySPI.h"//初始化
void W25Q64_Init()
{MySPI_Init();
}
//读ID
void W25Q64_ReadID(uint8_t* HID,uint16_t* SID)
{MySPI_Start();MySPI_SwapByte(W25Q64_JEDEC_ID);*HID=MySPI_SwapByte(W25Q64_DUMMY_BYTE);*SID=MySPI_SwapByte(W25Q64_DUMMY_BYTE);*SID<<=8;*SID|=MySPI_SwapByte(W25Q64_DUMMY_BYTE);MySPI_Stop();
}
//写使能
void W25Q64_WriteEnable()
{MySPI_Start();MySPI_SwapByte(W25Q64_WRITE_ENABLE);MySPI_Stop();
}
//等待忙状态
void W25Q64_WaitBusy()
{MySPI_Start();MySPI_SwapByte(W25Q64_READ_STATUS_REGISTER_1);uint32_t count=10000;while((MySPI_SwapByte(W25Q64_DUMMY_BYTE)&0x01)==0x01||count){count--;}MySPI_Stop();
}
//页编程
void W25Q64_PageProgram(uint32_t Address,uint8_t* DataArray,uint16_t Count)
{W25Q64_WriteEnable();uint16_t i;MySPI_Start();MySPI_SwapByte(W25Q64_PAGE_PROGRAM);MySPI_SwapByte(Address<<16);MySPI_SwapByte(Address<<8);MySPI_SwapByte(Address);for(i=0;i<Count;i++){MySPI_SwapByte(DataArray[i]);}MySPI_Stop();W25Q64_WaitBusy();
}
//扇区擦除
void W25Q64_SectorErase(uint32_t Address)
{W25Q64_WriteEnable();MySPI_Start();MySPI_SwapByte(W25Q64_SECTOR_ERASE_4KB);MySPI_SwapByte(Address<<16);MySPI_SwapByte(Address>>8);MySPI_SwapByte(Address);MySPI_Stop();W25Q64_WaitBusy();
}
//读数据
void W25Q64_ReadData(uint32_t Address,uint8_t* DataArray,uint16_t Count)
{uint16_t i;MySPI_Start();MySPI_SwapByte(W25Q64_READ_DATA);MySPI_SwapByte(Address<<16);MySPI_SwapByte(Address>>8);MySPI_SwapByte(Address);for(i=0;i<Count;i++){DataArray[i]=MySPI_SwapByte(W25Q64_DUMMY_BYTE);}MySPI_Stop();
}

对于W25Q64来说,需要先对不同的操作先写入对应的地址,
在这里插入图片描述
在这里插入图片描述

然后根据手册,写入地址和内容;

main.c

#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "Buzzer.h"
#include "W25Q64.h"
#include "OLED.h"uint8_t HID;
uint16_t SID;uint8_t ArrayWrite[]={0xAA,0xBB,0xCC,0xDD};
uint8_t ArrayRead[4];
int main()
{OLED_Init();W25Q64_Init();OLED_ShowString(1, 1, "MID:   DID:");OLED_ShowString(2, 1, "W:");OLED_ShowString(3, 1, "R:");W25Q64_ReadID(&HID,&SID);OLED_ShowHexNum(1,5,HID,2);OLED_ShowHexNum(1,12,SID,4);W25Q64_SectorErase(0x000100);W25Q64_PageProgram(0x000000,ArrayWrite,4);W25Q64_ReadData(0x000000,ArrayRead,4);OLED_ShowHexNum(2, 3, ArrayWrite[0], 2);OLED_ShowHexNum(2, 6, ArrayWrite[1], 2);OLED_ShowHexNum(2, 9, ArrayWrite[2], 2);OLED_ShowHexNum(2, 12, ArrayWrite[3], 2);OLED_ShowHexNum(3, 3, ArrayRead[0], 2);OLED_ShowHexNum(3, 6, ArrayRead[1], 2);OLED_ShowHexNum(3, 9, ArrayRead[2], 2);OLED_ShowHexNum(3, 12, ArrayRead[3], 2);while(1){}
}

可以通过改变擦除的地址和页编程的地址,以及存储的内容;来进行验证FLASH的注意事项。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/83784.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C#__自定义类传输数据和前台线程和后台线程

// 前台线程和后台线程 // 默认情况下&#xff0c;用Thread类创建的线程是前台线程。线程池中的线程总是后台线程。 // 用Thread类创建线程的时候&#xff0c;可以设置IsBackground属性&#xff0c;表示一个后台线程。 // 前台线程在主函数运行结束后依旧执行&#xff0c;后台线…

用 Audacity 比较两段音频差异

工作中遇到相同的处理流程&#xff0c;处理同一段音频&#xff0c;看看处理结果是否一致&#xff0c;可以用audacity来处理。 假设待比较的音频分别为 1.wav 2.wav 1、用Audacity打开1.wav 2、用Audacity打开2.wav&#xff0c;选中音频&#xff0c;然后用 效果 -> 反向&am…

弯道超车必做好题集锦二(C语言选择题)

前言&#xff1a; 编程想要学的好&#xff0c;刷题少不了&#xff0c;我们不仅要多刷题&#xff0c;还要刷好题&#xff01;为此我开启了一个弯道超车必做好题锦集的系列&#xff0c;每篇大约10题左右。此为第二篇选择题篇&#xff0c;该系列会不定期更新&#xff0c;后续还会…

解决idea登录github copilot报错问题

试了好多方案都没用&#xff0c;但是这个有用&#xff0c; 打开idea-help-edit custonm vm options 然后在这个文件里面输入 -Dcopilot.agent.disabledtrue再打开 https://github.com/settings/copilot 把这个设置成allow&#xff0c;然后重新尝试登录copilot就行就行 解决方…

智慧课堂学生行为检测评估算法

智慧课堂学生行为检测评估算法通过yolov5系列图像识别和行为分析&#xff0c;智慧课堂学生行为检测评估算法评估学生的表情、是否交头接耳行为、课堂参与度以及互动质量&#xff0c;并提供相应的反馈和建议。智慧课堂学生行为检测评估算法能够实时监测学生的上课行为&#xff0…

Linux TCP协议——三次握手,四次挥手

一、TCP协议介绍 TCP协议是可靠的、面向连接的、基于字节流的传输层通信协议。 TCP的头部结构&#xff1a; 源/目的端口号: 表示数据是从哪个进程来, 到哪个进程去;&#xff08;tcp是传输层的协议&#xff0c;端与端之间的数据传输&#xff0c;在TCP和UDP协议当中不会体现出I…

缓存最佳实践

目录 前言 一、Cache Aside&#xff08;旁路缓存&#xff09;策略 二、不一致解决场景及解决方案 一、数据库主从不一致 二、缓存与数据库不一致 三、问题分析 三、缓存误用 一、多服务共用缓存实例 二、调用方缓存数据 三、缓存作为服务与服务之间传递数据的媒介 四…

如何搭建数字化招商加盟体系?如何推动企业招商加盟增速?

线索转化率低、客户数据不完整及合作过程中服务满意度低等情景是企业在进行招商加盟的过程中常常会遇到的问题。如何使用数字化招商加盟工具&#xff0c;在业务运营的过程中来提高企业成单率、提高企业线索价值&#xff0c;提高客户满意度&#xff1f; 开利网络数字化招商加盟系…

计算机竞赛 基于图像识别的跌倒检测算法

前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 基于图像识别的跌倒检测算法 该项目较为新颖&#xff0c;适合作为竞赛课题方向&#xff0c;学长非常推荐&#xff01; &#x1f9ff; 更多资料, 项目分享&#xff1a; https://gitee.com/dancheng-senior/…

wireshark流量分析

一、题目一(1.pcap) 题目要求&#xff1a; 1.黑客攻击的第一个受害主机的网卡IP地址 2.黑客对URL的哪一个参数实施了SQL注入 3.第一个受害主机网站数据库的表前缀&#xff08;加上下划线例如abc&#xff09; 4.第一个受害主机网站数据库的名字 看到题目SQL注入&#xff0…

芯片行业震荡期,数字后端还可以入吗?

自去年开始&#xff0c;芯片行业仿佛进入了动荡期&#xff0c;经历了去年秋招和今年春招的小伙伴都知道&#xff0c;如今找工作有多难。 半导体行业人才缩减、各大厂裁员&#xff0c;在加上高校毕业生人数破千万&#xff0c;对于即将踏入IC这个行业的应届生来说&#xff0c;今…

java八股文面试[JVM]——双亲委派模型

1.当AppClassLoader去加载一个class时&#xff0c;它首先不会自己去尝试加载这个类&#xff0c;而是把类加载请求委托给父加载器ExtClassLoader去完成。 2.当ExtClassLoader去加载一个class时&#xff0c;它首先也不会去尝试加载这个类&#xff0c;而是把类加载请求委托给父加载…