PS923-MethodsandAnalysisinBehavioural

news/2024/12/11 19:39:33/文章来源:https://www.cnblogs.com/CSE2425/p/18600569

Assessment 2

PS923 - Methods and Analysis in Behavioural Science

Autumn Term 2024 (updated: 2024-12-06)

•  This assessment counts for 36% of your overall grade.

•  Submission Instructions:  Submit your solution as one html or pdf document containing R code, R output, figures, and written out text (i.e., full sentences) to Tabula (Assessment 2) by 12:00 noon (midday) on Wednesday, 15th January 2025.

•  Please use RMarkdown to create the document.

•  Important:  Your document should be called YOUR-STUDENT-ID_a2 (followed by the correct file ex- tension).  Please also add your student ID to the top of the document.  To help ensure anonymous marking, please refrain from using your name in either the document, script, or the file name.

• Your text does not need to contain references (i.e., references to scientific papers).

General Guidelines

Please complete the following tasks.   Your answers should have two separate sections for each task, one immediately after the other.

In the first section, write out your answers using complete sentences, as you might for the results section of a paper. Include descriptive statistics in the text, or in tables or figures as appropriate. Tables and figures should be of publication quality (i.e., fully labelled, etc.). Integrate inferential statistics into your description of the results. Your answers might be short.  Given the correctness/appropriateness of the statistical analysis, the first section will play the main role for your mark.

The second section acts as an appendix; this should include the complete R code that you used and its output. Add comments (after a #) to explain what the code does.  The code should show all of the commands that you used; enough for others to replicate exactly what you did (I will be copying and pasting code to run it, so make sure that works).  The second section will be used to help identify the source of any mistakes. You can include figures here that you used to代写PS923 - Methods and Analysis in Behavioural  explore the data that you do not wish to include in the first section. For practical reports and papers you would only submit the first section in the main manuscript.

For an example of such a solution, see the Assignment 1 sheet.

Finally, please note that submitting AI-generated text for this assessment will be considered as plagiarism; i.e., suspected cases will be referred to the academic integrity panel.

Task 1 Personalised references

When applying for a job, it’s obviously highly desirable to have a relevant CV and good references.  This task relates to whether, and the extent to which, the quality or style of references may influence decisions.

The file candidate .csv provides simulated (i.e., fictitious) data for how potential employers (identified by uID number) perceived various job candidates (rated on a scale of 0 to 100; 0 denoting definitely wouldn’t interview, 100 being definitely would interview).  Each rating was given after reading the candidate’s CV and a reference letter for the candidate.

The experiment used two types of candidates; each was either applying for a managerial role (where the employer would be likely to interact regularly with the candidate in-person if they subsequently got the job) or a technical role (where they would be less likely to meet on a day-to-day basis).  The reference of each candidate had a bias: each was manipulated to either be slightly positive or slightly negative.  Half the references were personalised (these included a small photo of the reviewer’s face in a corner of the page, and a ‘flashy’ signature in coloured ink) whilst the other half were not (no photo, and just the printed name of the referee).  Note that each employer only saw one reference (positive or negative) for any particular candidate, and each employer saw an equal number of positively and negatively biased reviews across the different items.

Given that references supply information, the general expectation is that the positively biased references will tend to produce higher ratings than the negatively biased references, but is this effect similar for both personalised and non-personalised references  (and for different role types)?   Some might expect that the impact of the reference bias would be greater for personalised references than the nonpersonal.

The focal hypothesis is that the effect of bias (on ratings) is stronger for personalised references than for nonpersonal references. The type of role (management or technical) mainly serves as a control variable but should also be considered. Please analyse the data with a repeated-measures (within-subjects) ANOVA and report the results as you would in a journal paper.

If you were to run a similar study in future (i.e., with the same general aims, but with the potential for small changes in the design), is there anything particular that you would change, or specifically aim to control for? Please comment on this at the end of your report.

Task 2 Short-cuts and time penalties

Time is a precious commodity, so it is not surprising that many choices in life depend on perceptions of risk in relation to how much time something might take or save.

This task provides simulated data (in file speed_greed.csv) on how individuals make choices when they are trying to achieve a goal in a minimal amount of time.  The participants encounter choices in an online (single-player) game; they make several such choices before completing each level of the game.  The options are sometimes useful shortcuts and sometimes impose time penalties.  The decisions govern how much of a risk they take when choosing between shortcuts, or when avoiding time penalties.  Prior to each decision, the participant learns whether they will face a shortcut option or a time-penalty (i.e., they know that they will gain or lose time on that decision, but not how much time).

Having learned that there is an available shortcut, for instance, they will be given a choice between a high- variance choice (e.g., saving either 100 or 500 seconds, with equal probability), or a low-variance choice with the same average (e.g., saving either 200 or 400 seconds, again with equal probability). Thus, either option saves the same amount of time on average (300 seconds in this example) – but one option is known to have a higher variance (i.e., it is more ‘risky’). If, instead of a shortcut, they had been informed that they would receive a time penalty, then after making their choice for whether to go for the more or less risky option, they would then lose that amount of time (according to the same general scheme).

Having familiarised themselves with the game (moving up, down, left, right, and how to select options when faced with choices), each participant was tasked with traversing 3 levels  (L1,  L2,  L3).   To  motivate the participants, payment for their involvement was linked to the speed with which they completed the 3 levels (the faster, the better). In each level, 18 key decisions were recorded (of whether they took the high or low risk option); choices for a high variance outcome are denoted by 1; choices for the low variance outcome are denoted by 0.

The file provides data for 80 participants; the data is in a wide format (one line per participant), with the intent being to have recorded a 1 or 0 for each decision; however, the recording system was not perfect; very occasionally it would not record a value for one of the choices.

Each participant was assigned to one Experience group:  shortcut, penalty, or mixed, which governed experiences during level 2 of the game. In levels 1 and 3, some gamble options were for shortcuts, and some were for time penalties. The options presented to a participant in level 1 was repeated in level 3 (though in a different order, to help prevent participants noticing). During level 2, the participant’s group determined whether they repeatedly faced shortcuts, time penalties or a mix of the two.  The order of trials in each group was randomized separately for each participant, so each individual saw the trials in an order that was uniquely created for them.

Your task is to analyse the data with an ANOVA and address the research question of whether a series of positive or negative experiences (i.e., shortcuts or penalties) has an effect on the probability of making a risky (i.e., high variance) choice.  In other words, are risk preferences stable or affected by recent experiences? Please report the results as you would in a journal paper.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/851012.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【docker】教你将程序打包成 Docker 镜像

引言 在现代软件开发中,容器化技术已经成为趋势。不仅仅是Docker,云原生架构、Kubernetes等同样依赖镜像技术来实现应用的快速交付和高效部署。将程序制作成镜像是迈向容器化和云原生的第一步。这篇文章将从零开始,带你轻松掌握将程序打包成镜像的核心技能,为你的应用构建“…

多头注意力

1.原理相比于单头注意力模型来说,不同之处是输入中的每一个token都放入多个注意力头中计算,并将同一个token得到的结果进行拼接后再通过一个线性层得到结果

CDP与Selenium相结合——玩转网页端自动化数据采集/爬取程序

Selenium Selenium 是一款开源且可移植的自动化软件测试工具,专门用于测试网页端应用程序或者采集网页端数据。它能够在不同的浏览器和操作系统上运行,具有很强的跨平台能力。Selenium可以帮助测试人员更高效地自动化测试基于Web网页端的应用程序,也可以帮忙开发者方便地完成…

记一次TIA V16下面1200PLC硬件编译错误的处理

今天使用TIA V16做了一个CPU 1214C AC/DC/Rly的程序,编译的时候报错如下:双击错误之处也没跳转到出错位置。刚开始以为是不是路径有中文,项目名有中文,后来一想都16版本了,不至于吧? 电脑里面另一个虚拟机里有TIA V17,把项目程序拷贝到那边,打开编译通过了。我估计是固…

转载:【AI系统】AI系统架构的组成

AI 系统组成 如图所示,大致可以将 AI 系统分为以下几个具体的方向:AI 训练与推理框架 AI 框架不仅仅是指如 PyTorch 等训练框架,还包括推理框架。其负责提供用户前端的 AI 编程语言,接口和工具链。负责静态程序分析与计算图构建,编译优化等工作。AI 框架本身通过提供供用户…

转载:【AI系统】AI系统概述与设计目标

AI 系统全栈架构 通过对 AI 的发展、以及模型算法、硬件与数据的趋势介绍,我们已经了解了 AI 系统的重要性。本文将介 AI 系统的设计目标、组成和生态,让读者形成 AI 系统的知识体系,为后续展开每篇文章的内容做好铺垫。 AI 系统设计本身需要各个环节通盘考量,无论是系统性…

转载:【AI系统】AI 发展驱动力

AI 起源于上世纪五十年代,经历了几次繁荣与低谷,直到 2016 年谷歌旗下的 DeepMind 发布 AlphaGo 程序赢得与世界围棋冠军的比赛,大众对 AI 的关注与热情被重新点燃。其实 AI 技术早在这个标志事件之前已经在工业界很多互联网公司中得到了广泛应用与部署。例如,搜索引擎服务…

转载:【AI系统】昇腾数据布局转换

NHWC 的数据排布方式更适合多核 CPU 运算, NCHW 的数据排布方式更适合 GPU 并行运算。那么接下来让我们了解一下在华为昇腾的 NPU 中,这种特征图的存储方式。截止到 2024 年,华为昇腾在私有格式的数据处理和特殊的数据形态越来越少,主要是得益于 AI 编译器和软件的迭代升级…

转载:【AI系统】AI的领域、场景与行业应用

AI 的历史与现状 本文将介绍 AI 的由来、现状和趋势,让大家能够了解 AI 应用的由来与趋势,为后面理解 AI 系统的设计形成初步的基础。在后面文章介绍的人工智能系统(AI System)奠定基础,值得注意的是,这些系统设计原则大部分也适合于机器学习系统(ML System)。 因为系统…

转载:【AI系统】分布式通信与 NVLink

在进入大模型时代后,大模型的发展已成为 AI 的核心,但训练大模型实际上是一项比较复杂的工作,因为它需要大量的 GPU 资源和较长的训练时间。 此外,由于单个 GPU 工作线程的内存有限,并且许多大模型的大小已经超出了单个 GPU 的范围。所以就需要实现跨多个 GPU 的模型训练,…

转载:【AI系统】NVLink 原理剖析

随着 AI 技术的飞速发展,大模型的参数量已经从亿级跃升至万亿级,这一变化不仅标志着 AI 的显著提升,也对支持这些庞大模型训练的底层硬件和网络架构提出了前所未有的挑战。为了有效地训练这些复杂的模型,需要依赖于大规模的 GPU 服务器集群,它们通过高速网络相互连接,以便…

转载:【AI系统】代数简化

代数简化(Algebraic Reduced)是一种从数学上来指导我们优化计算图的方法。其目的是利用交换率、结合律等规律调整图中算子的执行顺序,或者删除不必要的算子,以提高图整体的计算效率。 代数化简可以通过子图替换的方式完成,具体实现:1)可以先抽象出一套通用的子图替换框架…