第86篇 8种基本数据结构

news/2024/12/11 19:41:34/文章来源:https://www.cnblogs.com/chenshibao/p/18600476

1.数据结构概述

数据结构是计算机存储、组织数据的方式
通常情况下,精心选择的数据结构可以带来更高的运行或者存储效率。数据结构的优良将直接影响着我们程序的性能;
常用的数据结构有:数组(Array)、栈(Stack)、队列(Queue)、链表(Linked List)、树(Tree)、图(Graph)、堆(Heap)、散列表(Hash)等

2.数据结构的分类

2.1 排列方式

2.1.1 集合

集合:数据结构中的元素之间除了“同属一个集合” 的相互关系外,别无其他关系;
image

2.1.2 线性结构

线性结构:数据结构中的元素存在一对一的相互关系;
image

2.1.3 树形结构

树形结构:数据结构中的元素存在一对多的相互关系;

image

2.1.4 图形结构

图形结构:数据结构中的元素存在多对多的相互关系;

image

2.2 逻辑结构

数据结构按逻辑上划分为线性结构非线性结构

  • 线性结构:有且仅有一个开始结点和一个终端结点,并且所有结点都最多只有一个直接前驱和一个直接后继。

典型的线性表有:链表、栈和队列。它们共同的特点就是数据之间的线性关系,除了头结点和尾结点之外,每个结点都有唯一的前驱和唯一的后继,也就是所谓的一对一的关系。

  • 非线性结构:对应于线性结构,非线性结构也就是每个结点可以有不止一个直接前驱和直接后继。常见的非线性结构包括:树、图等。

3.数据结构的实现

3.1 数组

数组(Array):数组是有序元素的序列,在内存中的分配是连续的,数组会为存储的元素都分配一个下标(索引),此下标是一个自增连续的,访问数组中的元素通过下标进行访问;数组下标从0开始访问;

数组的优点是:查询速度快;

image

数组的缺点是:删除增加、删除慢;由于数组为每个元素都分配了索引且索引是自增连续的,因此一但删除或者新增了某个元素时需要调整后面的所有元素的索引;

新增一个元素40到3索引下标位置:
image

删除2索引元素:
image

总结:数组查询快,增删慢,适用于频繁查询,增删较少的情况;

3.2 链表

链表(Linked List):链表是由一系列节点Node(也可称元素)组成,数据元素的逻辑顺序是通过链表的指针地址实现,通常情况下,每个节点包含两个部分,一个用于存储元素的内存地址,名叫数据域,另一个则指向下一个相邻节点地址的指针,名叫指针域;根据链表的指向不同可分为单向链表、双向链表、循环链表等;我们本章介绍的是单向链表,也是所有链表中最常见、最简单的链表;

链表的节点(Node):
image
完整的链表:
image

链表的优点:新增节点、删除节点快;

在链表中新增一个元素:
image

在单向链表中,新增一个元素最多只会影响上一个节点,比在数组中的新增效率要高的多;

在链表中删除一个元素:

image

  • 链表的缺点:

    • 1)查询速度慢,查询从头部开始一直查询到尾部,如果元素刚好是在最尾部那么查询效率势必非常低;
    • 2)链表像对于数组多了一个指针域的开销,内存相对占用会比较大;

    总结:数据量较小,需要频繁增加,删除操作的场景,查询操作相对较
    少;

3.3 栈

  • 栈(Stack):是一种特殊的线性表,仅能在线性表的一端操作,栈顶允许操作,栈底不允许操作。 栈的特点是:先进后出从栈顶放入元素的操作叫入栈(压栈),取出元素叫出栈(弹栈)。

入栈操作:

image
出栈操作:

image

栈的特点:先进后出,Java中的栈内存就是一个栈的数据结构,先调用的方法要等到后调用的方法结束才会弹栈(出栈);

3.4 队列

  • 队列(Queue):队列与栈一样,也是一种线性表,其限制是仅允许在表的一端进行插入,而在表的另一端进行删除。队列的特点是先进先出,从一端放入元素的操作称为入队,取出元素为出队;

image

队列的特点:先进先出;

3.5 树

树是一种数据结构,它是由n(n>=1)个有限节点组成一个具有层次关系的集合。把它叫做 “树” 是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。它具有以下的特点:

  • 1)每个节点有0个或多个子节点;
  • 2)没有父节点的节点称为根节点;
  • 3)每一个非根节点有且只有一个父节点;
  • 4)除了根节点外,每个子节点可以分为多个不相交的子树;
  • 5)右子树永远比左子树大,读取顺序从左到右;

树的分类有非常多种,平衡二叉树(AVL)、红黑树RBL(R-B Tree)、B树(B-Tree)、B+树(B+Tree)等,但最早都是由二叉树演变过去的;

二叉树的特点:每个结点最多有两颗子树

image

3.5 堆

  • 堆(Heap):堆可以看做是一颗用数组实现的二叉树,所以它没有使用父指针或者子指针。堆根据“堆属性”来排序,“堆属性”决定了树中节点的位置。

image

堆的特性:如果一个结点的位置为k,则它的父结点的位置为[k/2],而它的两个子结点的位置则分别为2k和2k+1。这样,在不使用指针的情况下,我们也可以通过计算数组的索引在树中上下移动:从arr[k]向上一层,就令k等于k/2,向下一层就令k等于2k或2k+1。

堆的定义如下:n个元素的序列{k1,k2,ki,…,kn}当且仅当满足下关系时,称之为堆;

(ki <= k2i,ki <= k2i+1)或者(ki >= k2i,ki >= k2i+1)满足前者的表达式的成为小顶堆(小根堆),满足后者表达式的为大顶堆(大根堆),很明显我们上面画的堆数据结构是一个大根堆;

大小根堆数据结构图:
image

一般来说将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆。常见的堆有二叉堆、斐波那契堆等。

3.6 散列表

  • 散列表(Hash),也叫哈希表,是根据键和值 (key和value) 直接进行访问的数据结构,通过key和value来映射到集合中的一个位置,这样就可以很快找到集合中的对应元素。它利用数组支持按照下标访问的特性,所以散列表其实是数组的一种扩展,由数组演化而来。
    散列表首先需要根据key来计算数据存储的位置,也就是数组索引的下标;

  • HashValue=hash(key)

散列表就是把Key通过一个固定的算法函数既所谓的哈希函数转换成一个整型数字,然后就将该数字对数组长度进行取余,取余结果就当作数组的下标,将value存储在以该数字为下标的数组空间里,这种存储空间可以充分利用数组的查找优势来查找元素,所以查找的速度很快。

image

在散列表中,左边是个数组,数组的每个成员包括一个指针,指向一个链表的头,当然这个链表可能为空,也可能元素很多。我们根据元素的一些特征把元素分配到不同的链表中去,也是根据这些特征,找到正确的链表,再从链表中找出这个元素。

3.7 图

图(Graph):图是一系列顶点(元素)的集合,这些顶点通过一系列边连接起来组成图这种数据结构。顶点用圆圈表示,边就是这些圆圈之间的连线。顶点之间通过边连接。

图分为有向图和无向图:

  • 有向图:边不仅连接两个顶点,并且具有方向;
  • 无向图:边仅仅连接两个顶点,没有其他含义;

image

例如,我们可以把图这种数据结构看做是一张地图:

地图中的城市我们看做是顶点,高铁线路看做是边;很显然,我们的地图是一种无向图,以长沙到上海为例,经过的城市有长沙、南昌、杭州、上海等地;那么从上海也可以按照原有的路线进行返回;

image
实现了图这种数据结构之后我们可以在此数据结构上做一些复杂的算法计算,如广度优先搜索算法、深度优先搜索算法等;

  • 广度搜索:搜索到一个顶点时,先将此顶点的所有子顶点全部搜索完毕,再进行下一个子顶点的子顶点搜索;

image

例如上图:以武汉为例进行广度搜索,

1)首先搜索合肥、南昌、长沙等城市;

2)通过合肥搜索到南京;

3)再通过南昌搜索到杭州、福州,

4)最终通过南京搜索到上海;完成图的遍历搜索;

不通过南京搜索到杭州是因为已经通过南昌搜索到杭州了,不需要再次搜索;
  • 深度搜索:搜索到一个顶点时,先将此顶点某个子顶点搜索到底部(子顶点的子顶点的子顶点…),然后回到上一级,继续搜索第二个子顶点一直搜索到底部;

image

例如上图:以武汉为例进行深度搜索,

  • 1)首先搜索合肥、南京、上海等城市;

  • 2)回到武汉,进行第二子顶点的搜索,搜索南昌、杭州等地;

  • 3)回到南昌,搜索福州;

  • 4)回到武汉,搜索长沙;

      图是一种比较复杂的数据结构,在存储数据上有着比较复杂和高效的算法,分别有邻接矩阵 、邻接表、十字链表、邻接多重表、边集数组等存储结构。我们本次了解到这里即可;
    

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/851014.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

全球供应链一体化解决方案

在当今全球化的经济背景下,供应链管理的效率和效果对企业的成功至关重要。本文将带您深入了解中外运物流如何通过其全球供应链一体化解决方案,帮助企业优化从客户端到端的供应链流程。什么是一体化解决方案?即面向企业整体供应链的集成解决方案,覆盖客户端到端供应链,并在…

【docker】教你将程序打包成 Docker 镜像

引言 在现代软件开发中,容器化技术已经成为趋势。不仅仅是Docker,云原生架构、Kubernetes等同样依赖镜像技术来实现应用的快速交付和高效部署。将程序制作成镜像是迈向容器化和云原生的第一步。这篇文章将从零开始,带你轻松掌握将程序打包成镜像的核心技能,为你的应用构建“…

多头注意力

1.原理相比于单头注意力模型来说,不同之处是输入中的每一个token都放入多个注意力头中计算,并将同一个token得到的结果进行拼接后再通过一个线性层得到结果

CDP与Selenium相结合——玩转网页端自动化数据采集/爬取程序

Selenium Selenium 是一款开源且可移植的自动化软件测试工具,专门用于测试网页端应用程序或者采集网页端数据。它能够在不同的浏览器和操作系统上运行,具有很强的跨平台能力。Selenium可以帮助测试人员更高效地自动化测试基于Web网页端的应用程序,也可以帮忙开发者方便地完成…

记一次TIA V16下面1200PLC硬件编译错误的处理

今天使用TIA V16做了一个CPU 1214C AC/DC/Rly的程序,编译的时候报错如下:双击错误之处也没跳转到出错位置。刚开始以为是不是路径有中文,项目名有中文,后来一想都16版本了,不至于吧? 电脑里面另一个虚拟机里有TIA V17,把项目程序拷贝到那边,打开编译通过了。我估计是固…

转载:【AI系统】AI系统架构的组成

AI 系统组成 如图所示,大致可以将 AI 系统分为以下几个具体的方向:AI 训练与推理框架 AI 框架不仅仅是指如 PyTorch 等训练框架,还包括推理框架。其负责提供用户前端的 AI 编程语言,接口和工具链。负责静态程序分析与计算图构建,编译优化等工作。AI 框架本身通过提供供用户…

转载:【AI系统】AI系统概述与设计目标

AI 系统全栈架构 通过对 AI 的发展、以及模型算法、硬件与数据的趋势介绍,我们已经了解了 AI 系统的重要性。本文将介 AI 系统的设计目标、组成和生态,让读者形成 AI 系统的知识体系,为后续展开每篇文章的内容做好铺垫。 AI 系统设计本身需要各个环节通盘考量,无论是系统性…

转载:【AI系统】AI 发展驱动力

AI 起源于上世纪五十年代,经历了几次繁荣与低谷,直到 2016 年谷歌旗下的 DeepMind 发布 AlphaGo 程序赢得与世界围棋冠军的比赛,大众对 AI 的关注与热情被重新点燃。其实 AI 技术早在这个标志事件之前已经在工业界很多互联网公司中得到了广泛应用与部署。例如,搜索引擎服务…

转载:【AI系统】昇腾数据布局转换

NHWC 的数据排布方式更适合多核 CPU 运算, NCHW 的数据排布方式更适合 GPU 并行运算。那么接下来让我们了解一下在华为昇腾的 NPU 中,这种特征图的存储方式。截止到 2024 年,华为昇腾在私有格式的数据处理和特殊的数据形态越来越少,主要是得益于 AI 编译器和软件的迭代升级…

转载:【AI系统】AI的领域、场景与行业应用

AI 的历史与现状 本文将介绍 AI 的由来、现状和趋势,让大家能够了解 AI 应用的由来与趋势,为后面理解 AI 系统的设计形成初步的基础。在后面文章介绍的人工智能系统(AI System)奠定基础,值得注意的是,这些系统设计原则大部分也适合于机器学习系统(ML System)。 因为系统…

转载:【AI系统】分布式通信与 NVLink

在进入大模型时代后,大模型的发展已成为 AI 的核心,但训练大模型实际上是一项比较复杂的工作,因为它需要大量的 GPU 资源和较长的训练时间。 此外,由于单个 GPU 工作线程的内存有限,并且许多大模型的大小已经超出了单个 GPU 的范围。所以就需要实现跨多个 GPU 的模型训练,…

转载:【AI系统】NVLink 原理剖析

随着 AI 技术的飞速发展,大模型的参数量已经从亿级跃升至万亿级,这一变化不仅标志着 AI 的显著提升,也对支持这些庞大模型训练的底层硬件和网络架构提出了前所未有的挑战。为了有效地训练这些复杂的模型,需要依赖于大规模的 GPU 服务器集群,它们通过高速网络相互连接,以便…