SOCS0100ComputationalTools

news/2024/12/28 19:44:32/文章来源:https://www.cnblogs.com/MATH1131/p/18637862

SOCS0100 Computational Tools for Reproducible Social Science

Second Summative Assignment

Guidelines for Completing and Submitting SOCS0100 Assignment:

• This assessment is due on 13 January 2025, 1pm and shall be submitted on Moodle.

• Late submission results in penalties. There is no exception to late submission penalties, unless an extenuating circumstances application has been successfully made. Please see the details here.

• You are expected to submit a compressed (zipped) folder: in the folder, you should include the coversheet, the main body of your report (html) (i.e., answers to the questions), any tables, figures, dataset, and integrated chunks of code you may use in your report, your main code files

(e.g., R scripts, app.R, Quarto docs), and README.md file.

• Word limit of this assignment is  1500. This word count excludes tables, chunks of code, figures, and table and figure legends, references, but includes any footnote or endnote you may use. Exceeding this limit will result in penalties.

• This is an assessed piece of coursework for the SOCS0100 module; collaboration and/or discussion with anyone is strictly prohibited. The rules for plagiarism apply and any cases of suspected plagiarism of published work or the work of classmates will betaken seriously.

• The coursework will be assessed against the代写SOCS0100 Computational Tools criteria set in the UCL UG-ESSAY GRADING SCHEME, a pdf of which could be seen in the assessment submission area of the course on Moodle. In addition to those general guidelines, further specific factors will affect the marks: Correctness of your code, clarity of arguments, rigour in processing, analysing, and presenting the tasks, creativity and novelty in your answers, and the ability to demonstrate that key concepts treated in the module are understood well.

• Please read the below guidelines and AI-usage policy carefully to avoid losing unnecessary    marks.

Assessment PartI

•   The second assessment aims to evaluate your proficiency in applying fundamental computational techniques in automated  data collection and building an interactive dashboard to explore the real-world data you formed.

•   Additionally, you will be required to add an exhaustive overview of the dataset, the significance of the data source in social sciences, and some insights from the interactive dashboard into a structured report while critically engaging with ChatGPT. This assignment is designed to foster both technical skills and critical thinking in using computational tools.

PartI-A Automated Data Collection (30 points)

•   Employ one of the following automated data collection techniques  covered in the module (static web-scraping; dynamic web-scraping; or APIs) in R to comprehensively gather data from a chosen source. In-class exercises can guide you on what sort of web source you can scrape for this part.

•   Methodically document each step of your data collection process, elucidating  the rationale behind every decision.

•   Provide code snippets complemented by explanatory comments, ensuring that your data collection procedures are both transparent and reproducible.

PartI-B Data Exploration and Contextualisation (10 points)

•   Clean and tidy your data for the next steps. Please show your data wrangling process in detail.

•   Provide an exhaustive overview of the dataset you formed, encompassing characteristics such as dimensions, data types, and a comprehensive description of each variable.

•   Clarify the rationale behind your selection of the data source, emphasising its potential significance in social sciences.

Assessment Part II

Part II-A Building an Interactive Dashboard with R Shiny (30 points)

•  Create  an  interactive  dashboard  using  R  Shiny  that  utilises  the  refined  dataset.  Your interactive dashboard should be reproducible through your app.R file. Note that you are not expected to embed the Shiny app into your Quarto document.

• Design and implement a minimum of three interactive visualisations within the R  Shiny dashboard, derived from your dataset.

• Offer clear and concise interpretations of each visualisation, elucidating any emerging trends, patterns, or noteworthy observations in your report (you don’t need to add visualisations into your report).

• Elaborate on the specific visualisations chosen, justifying their selection, and elucidating their contributions to a deeper comprehension of the data source.

Part II-B Reproducibility (10 points)

•   Uphold the principles of reproducibility by  sharing your replication materials in the compressed (zipped) folder, encompassing all pertinent code and a meticulously crafted README.md file. Prioritise the meticulous documentation of your   codebase, rendering it accessible and comprehensible for potential replication.

Part II-C Critical Engagement with AI: ChatGPT (20 points)

You are expected to provide your reflections based on the points below in the report.

• Embrace ChatGPT as a collaborative tool in your computational process, soliciting its code refinement.

• Engage in a critical evaluation of ChatGPT's contributions to your project within a dedicated section of your report

• Analyse the value-added by ChatGPT, highlighting instances where it offered insightful perspectives, refined code, or innovative problem-solving approaches.

• Dilate upon any constraints or challenges that surfaced during interactions with ChatGPT, contributing to a well-rounded assessment.

• Reflect upon how ChatGPT impacted your assessment's trajectory, shaping its outcome and affecting your overall learning experience.

AI-Usage Policy in This Assessment:

In this module/assignment, students are permitted to use only ChatGPT for specific defined processes within the assessment.

This can be utilised to enhance and support the development of specific skills in specific ways, as specified by the module leader and required by the assessment. As per the requirements, for instance, students are asked to use ChatGPT for critically evaluating their code in automated data collection, data processing, and creating interactive dashboards in this assessment. In doing  so,  students  are  expected  to  highlight  instances  where  ChatGPT  offers  insightful solutions, refined code, or worsens student’s solutions and code.

Except critical engagement with ChatGPT through code refinement, this module prohibits all other use of artificial intelligence (AI), including large language models, to author or co-author  formative or  summative work. This prohibition includes the  following practices  and  any practices similar to them:

• Writing parts or all of an assessment;

• Generating outlines, structures and high-level arguments for essays;

• Rewriting or paraphrasing text from other sources for use in written work.

Language and writing review are not prohibited, defined as having a third-party or software check areas of academic writing such as structure, fluency, presentation, grammar, spelling, punctuation,  and  language  translation.  However,  language  review  may  be  considered Academic Misconduct if substantive changes to content have been made by the reviewer or software or at their recommendation, which would suggest that the reviewer or software had either produced or determined the substantive content of the work.

Including content generated by AI tools will not be considered academic misconduct only if it is clearly signposted (by, for example, quotation marks) and attributed (by including a reference to the tool and date of use). However, similarly to quoting Wikipedia, quoting an AI system is unlikely to be a valuable addition to your work and unless clearly relevant to an argument may negatively impact the perceived quality of your work.

Suspected use of AI technologies other than specified one in the assessment may lead students to be subject to an Investigatory Viva.

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/860514.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

软件工程我依然爱你

用一个词总结软工实践课程——Never forget!!!😚😚😚 前言现在是2024年12月27号下午4点,是我考完软件工程课程的四小时,也是我软工实践结束的第27天。我竟莫名对软件工程有点不舍,特别是我们倾注大量心血的项目——福小研,我愿称之为我心里最好的项目之一,或许它…

2024省选联测1

2024省选联测1题目来源: 2024省选联测1 \(T1\) HZTG5808. interval \(40pts\)原题: QOJ 1173. Knowledge Is..考虑按照左端点升序排序后反悔贪心。分别维护已经匹配的区间对和未被匹配的区间,若当前区间 \(a\) 可以和前面剩余的未被匹配的区间匹配则直接匹配;否则尝试找到一…

2024-2025-1 20241407《计算机基础与程序设计》第十四周学习总结

作业信息这个作业属于哪个课程 2024-2025-1计算机基础与程序设计这个作业要求在哪里 2024-2025-1计算机基础与程序设计第十四周作业这个作业的目标 学习二进制文件和文本文件,文件的打开和关闭,顺序读写与随机读写,标准输入和输出及其重定向作业正文 本博客教材学习内容总结…

GraphMAE2(解码增强型掩码自监督图学习器)

GraphMAE2: A Decoding-Enhanced Masked Self-Supervised Graph Learner 解码增强型掩码自监督图学习器 背景 ​ 近年来,自监督学习(Self-supervised Learning,SSL)得到了广泛的探索,特别是生成式自监督学习在自然语言处理以及其他人工智能领域已经取得了新兴的成功,像…

PTA第7~8次大作业分析及总结

一、前言 本次Blog为第七~八次大作业的总结。两次大作业主要考察抽象类及继承方面的相关内容,是在第六次大作业基础上的进一步升级,难度大幅提升,由于前面的作业我没有很好地完成,这两次大作业也没有拿到好成绩,这也算是提醒我:在进行一个设计时要提前为后续更加预留空间…

python3网络爬虫开发实战-第2版PDF免费下载

本书介绍了如何利用 Python 3 开发网络爬虫。本书为第 2 版,相比于第 1 版,为每个知识点的实战项目配备了针对性的练习平台,避免了案例过期的问题。另外,主要增加了异步爬虫、JavaScript 逆向、App 逆向、页面智能解析、深度学习识别验证码、Kubernetes 运维及部署等知识点…

Java大作业总结

Java大作业总结 目录Java大作业总结一.前言第七次大作业1.设计与分析2.踩坑心得(一)电阻值处理(二)设备状态更新顺序3.改进建议(一)错误处理与异常机制(二)性能优化(三)代码结构调整第八次大作业1.设计与分析2.踩坑心得3.改进建议期末总结 一.前言 这2次大作业都是前…

题目集 7 - 8 总结性 Blog

一、前言 在本学期的学习旅程中,题目集 7 和题目集 8 犹如两座重要的里程碑,引领我们在编程的道路上不断探索与前行。这两个题目集总计包含了2道题目,它们犹如一把把钥匙,开启了面向对象编程世界的大门,引领我们逐步深入其中,领略其复杂与精妙之处。题目集 7 宛如基石,着…

PHP_network

PHP PHP基础教程 语法PHP 脚本以<? php 开头 ,以?>结尾php语句以 ;结尾,php代码块的关闭标签也会自动标名 ;php支持的三种注释 //单行注释 单行注释 /* 多行注释 */php中,所有用户定义的函数、类和关键词都对大小写不敏感; 但所有变量都对大小写敏感变量 变量规则…

Python读取栅格图像并对像元数据处理后导出到表格文件中

本文介绍基于Python语言中的gdal模块,读取一景.tif格式的栅格遥感影像文件,提取其中每一个像元的像素数值,对像素值加以计算(辐射定标)后,再以一列数据的形式将计算后的各像元像素数据保存在一个.csv格式文件中的方法~本文介绍基于Python语言中的gdal模块,读取一景.tif格…

22207321-王郅坚-第三次BLOG

前言 这两次电器控制系统的开发迭代,涵盖了不同的编程知识点、设计思路与系统逻辑。第一次迭代实现了一个基础的电器控制系统,通过简单的电器类型和基本操作设置,实现了电器状态的管理与切换。这一阶段主要考察基本数据结构的使用、输入输出处理、以及简单的判断与循环逻辑。…