SPI3+DMA外设驱动-TFTLCD初始化

前言

(1)本系列是基于STM32的项目笔记,内容涵盖了STM32各种外设的使用,由浅入深。

(2)小编使用的单片机是STM32F105RCT6,项目笔记基于小编的实际项目,但是博客中的内容适用于各种单片机开发的同学学习和使用。

学习目标

本章有五个任务:

  1. 了解关于TFTLCD液晶屏的硬件接口
  2. 学习和了解STM32 DMA驱动
  3. TFTLCD液晶屏的硬件接口初始化
  4. LCD液晶初始化
  5. TFTLCD液晶屏代码移植和显示测试

TFTLCD液晶屏硬件电路分析

接口说明:TFTLCD液晶屏是连接到了单片机的SPI3接口。

TFTDIO ---- PB5 SPI3-MOSI 数据发送管脚 SPI硬件控制

TFTCMD---- PB4 SPI3-MISO 数据/指令控制脚

TFTCLK ----- PB3 SPI3-SCK 数据发送时钟脚 SPI硬件控制

CS ------PB6 片选脚位

LEDA_EN— PC10 LCD屏背光控制脚

FTFRES — PA15 LCD复位脚

电路设计说明:

● 硬件电路设计是参考液晶屏官方给的参考资料设计的。基本是按照芯片资料照抄过来即可

● 为了提高液晶屏的刷屏效率,我们选择了SPI3接口。采用单线模式

● DIO CLK 必须固定连接 MOSI SCK ,其他管脚可以连任意IO口

TFTLCD液晶屏初始化

hal_tftlcd.c 代码

#include "hal_tftlcd.h"
#include "stm32F10x.h"
//#include "lcd_font.h"//-----------------LCD端口定义---------------- 
#define LCD_SCLK_Clr() GPIO_ResetBits(GPIOB,GPIO_Pin_3)//SCL=SCLK
#define LCD_SCLK_Set() GPIO_SetBits(GPIOB,GPIO_Pin_3)#define LCD_MOSI_Clr() GPIO_ResetBits(GPIOB,GPIO_Pin_5)//SDA=MOSI
#define LCD_MOSI_Set() GPIO_SetBits(GPIOB,GPIO_Pin_5)#define LCD_DC_Clr()   GPIO_ResetBits(GPIOB,GPIO_Pin_4)//DC
#define LCD_DC_Set()   GPIO_SetBits(GPIOB,GPIO_Pin_4)#define LCD_CS_Clr()   GPIO_ResetBits(GPIOB,GPIO_Pin_6)//CS
#define LCD_CS_Set()   GPIO_SetBits(GPIOB,GPIO_Pin_6)#define LCD_RES_Clr()  GPIO_ResetBits(GPIOA,GPIO_Pin_15)//RES
#define LCD_RES_Set()  GPIO_SetBits(GPIOA,GPIO_Pin_15)#define LCD_BLK_Clr()  GPIO_ResetBits(GPIOC,GPIO_Pin_10)//BLK
#define LCD_BLK_Set()  GPIO_SetBits(GPIOC,GPIO_Pin_10)void hal_tftlcdConfig(void)
{SPI_InitTypeDef  SPI_InitStructure;GPIO_InitTypeDef  GPIO_InitStructure;DMA_InitTypeDef  DMA_InitStructure;//DMA初始化结构体RCC_APB1PeriphClockCmd(RCC_APB1Periph_SPI3, ENABLE);RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA2, ENABLE);	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA|RCC_APB2Periph_GPIOB|RCC_APB2Periph_GPIOC|RCC_APB2Periph_AFIO, ENABLE);  //相关IO的初始化GPIO_PinRemapConfig(GPIO_Remap_SWJ_JTAGDisable, ENABLE);//RES-PA15GPIO_InitStructure.GPIO_Pin = GPIO_Pin_15;	 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; 		 //推挽输出GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;//速度50MHzGPIO_Init(GPIOA, &GPIO_InitStructure);	  //初始化GPIOAGPIO_SetBits(GPIOA,GPIO_Pin_15);//CMD-PB4//CS-PB6GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4|GPIO_Pin_6;	 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; 		 //推挽输出GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;//速度50MHzGPIO_Init(GPIOB, &GPIO_InitStructure);	  //初始化GPIOA	GPIO_SetBits(GPIOB,GPIO_Pin_4|GPIO_Pin_6);//BLK-PC10GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;	 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; 		 //推挽输出GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;//速度50MHzGPIO_Init(GPIOC, &GPIO_InitStructure);	  //初始化GPIOA		GPIO_ResetBits(GPIOC,GPIO_Pin_10);//CLK-PB3//MOSI-PB5GPIO_InitStructure.GPIO_Pin =  GPIO_Pin_3 |GPIO_Pin_5;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;GPIO_Init(GPIOB, &GPIO_InitStructure);	/* SPI3 configuration */ SPI_InitStructure.SPI_Direction = SPI_Direction_1Line_Tx; //SPI1设置为单线SPI_InitStructure.SPI_Mode = SPI_Mode_Master;	                     //设置SPI1为主模式SPI_InitStructure.SPI_DataSize = SPI_DataSize_8b;                  //SPI发送接收8位帧结构SPI_InitStructure.SPI_CPOL = SPI_CPOL_Low;	 		                   //串行时钟在不操作时,时钟为高电平SPI_InitStructure.SPI_CPHA = SPI_CPHA_1Edge;		                   //第二个时钟沿开始采样数据SPI_InitStructure.SPI_NSS = SPI_NSS_Soft;			                     //NSS信号由软件(使用SSI位)管理SPI_InitStructure.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_2; //定义波特率预分频的值:波特率预分频值为8SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_MSB;				         //数据传输从MSB位开始SPI_InitStructure.SPI_CRCPolynomial = 7;						               //CRC值计算的多项式SPI_Init(SPI3, &SPI_InitStructure);//使能DMA发送DMA_DeInit(DMA2_Channel2); DMA_InitStructure.DMA_PeripheralBaseAddr = (u32)&SPI3->DR; //数据传输目标地址//数据缓存地址DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralDST; 	//外设作为数据传输的目的地DMA_InitStructure.DMA_BufferSize = 1024;            //发送Buff数据大小DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable; //设置外设地址是否递增DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;          //设置内存地址是否递增DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte; //外设数据宽度为8位DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte;       	//内存数据宽度为8位	DMA_InitStructure.DMA_Mode =   DMA_Mode_Normal;                              //普通缓存模式DMA_InitStructure.DMA_Priority = DMA_Priority_Medium;                        //高优先级DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;                                 //禁止DMA2个内存相互访问DMA_Init(DMA2_Channel2, &DMA_InitStructure);                                 //初始化DMA,SPI在DMA1的通道2SPI_I2S_DMACmd(SPI3,SPI_I2S_DMAReq_Tx,ENABLE);                               /使能SPI2 DMA发送功能*/	SPI_Cmd(SPI3, ENABLE);//使能SPI2
}// SPI3 DMA发送
void DMA_SPI3_TX(unsigned char *buffer,unsigned short len)
{DMA2->IFCR |=(0xf<<4);    //清除通道2上面所有的标志位DMA2_Channel2->CNDTR=len; //设置要传输的数据长度DMA2_Channel2->CMAR=(u32)buffer; //设置RAM缓冲区地址DMA2_Channel2->CCR|=0x1;   ///启动DMAwhile(!(DMA2->ISR&(1<<5)));///等待数据数据传输完成DMA2_Channel2->CCR &=(uint32_t)~0x1;//关闭DMA
}void LCD_Writ_Bus(unsigned char dat) 
{	LCD_CS_Clr();DMA_SPI3_TX(&dat,1);
}/******************************************************************************函数说明:LCD写入数据入口数据:dat 写入的数据返回值:  无
******************************************************************************/
void LCD_WR_DATA8(unsigned char dat)
{LCD_Writ_Bus(dat);
}/******************************************************************************函数说明:LCD写入数据入口数据:dat 写入的数据返回值:  无
******************************************************************************/
void LCD_WR_DATA(unsigned short dat)
{unsigned char d[2];d[0] = dat>>8;d[1] = dat;DMA_SPI3_TX(&d[0],2);
}/******************************************************************************函数说明:LCD写入命令入口数据:dat 写入的命令返回值:  无
******************************************************************************/
void LCD_WR_REG(unsigned char dat)
{LCD_DC_Clr();//写命令LCD_Writ_Bus(dat);LCD_DC_Set();//写数据
}void hal_Oled_Display_on(void)
{LCD_BLK_Set();
}void hal_Oled_Display_off(void)
{LCD_BLK_Clr();
}
///void hal_oled_RestH(void)
{LCD_RES_Set();
}
void hal_oled_RestL(void)
{LCD_RES_Clr();
}

hal_tftlcd.h 代码

#ifndef ____HAL_TFTLCD_H_
#define ____HAL_TFTLCD_H_void hal_tftlcdConfig(void);void LCD_WR_REG(unsigned char dat);
void LCD_WR_DATA8(unsigned char dat);
void LCD_WR_DATA(unsigned short dat);
void DMA_SPI3_TX(unsigned char *buffer,unsigned short len);void hal_Oled_Display_on(void);
void hal_Oled_Display_off(void);
void hal_oled_RestH(void);
void hal_oled_RestL(void);
#endif

代码分析

hal_tftlcd.c 包括

● TFTLCD液晶屏通讯接口初始化

● TFTLCD通过DMA数据发送函数

● TFTLCD液晶屏其他端口控制函数

TFTLCD SP3接口初始化流程

➢ 定义TFTLCD通讯的接口

//-----------------LCD端口定义---------------- 
#define LCD_SCLK_Clr() GPIO_ResetBits(GPIOB,GPIO_Pin_3)//SCL=SCLK
#define LCD_SCLK_Set() GPIO_SetBits(GPIOB,GPIO_Pin_3)#define LCD_MOSI_Clr() GPIO_ResetBits(GPIOB,GPIO_Pin_5)//SDA=MOSI
#define LCD_MOSI_Set() GPIO_SetBits(GPIOB,GPIO_Pin_5)#define LCD_DC_Clr()   GPIO_ResetBits(GPIOB,GPIO_Pin_4)//DC
#define LCD_DC_Set()   GPIO_SetBits(GPIOB,GPIO_Pin_4)#define LCD_CS_Clr()   GPIO_ResetBits(GPIOB,GPIO_Pin_6)//CS
#define LCD_CS_Set()   GPIO_SetBits(GPIOB,GPIO_Pin_6)#define LCD_RES_Clr()  GPIO_ResetBits(GPIOA,GPIO_Pin_15)//RES
#define LCD_RES_Set()  GPIO_SetBits(GPIOA,GPIO_Pin_15)#define LCD_BLK_Clr()  GPIO_ResetBits(GPIOC,GPIO_Pin_10)//BLK
#define LCD_BLK_Set()  GPIO_SetBits(GPIOC,GPIO_Pin_10)

➢ 打开相关时钟

RCC_APB1PeriphClockCmd(RCC_APB1Periph_SPI3, ENABLE);
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA2, ENABLE);	
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA|RCC_APB2Periph_GPIOB |RCC_APB2Periph_GPIOC | RCC_APB2Periph_AFIO, ENABLE);  //相关IO的初始化GPIO_PinRemapConfig(GPIO_Remap_SWJ_JTAGDisable, ENABLE);//打开端口重映射,PB3、PB4端口默认的功能不是SPI3,是JTAG,所以要对端口重映射,让它们具备SPI3的功能

➢ 初始化TFTLCD 液晶屏 和SPI3相关的GPIO口

	//CMD-PB4//CS-PB6GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4|GPIO_Pin_6;	 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; 		 //推挽输出GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;//速度50MHzGPIO_Init(GPIOB, &GPIO_InitStructure);	  //初始化GPIOA	GPIO_SetBits(GPIOB,GPIO_Pin_4|GPIO_Pin_6);//BLK-PC10GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;	 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; 		 //推挽输出GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;//速度50MHzGPIO_Init(GPIOC, &GPIO_InitStructure);	  //初始化GPIOA		GPIO_ResetBits(GPIOC,GPIO_Pin_10);//CLK-PB3//MOSI-PB5GPIO_InitStructure.GPIO_Pin =  GPIO_Pin_3 |GPIO_Pin_5;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;GPIO_Init(GPIOB, &GPIO_InitStructure);	

➢ 初始化SPI3相关参数

/* SPI3 configuration */ 
SPI_InitStructure.SPI_Direction = SPI_Direction_1Line_Tx; //SPI1设置为单线
SPI_InitStructure.SPI_Mode = SPI_Mode_Master;	                     //设置SPI1为主模式
SPI_InitStructure.SPI_DataSize = SPI_DataSize_8b;                  //SPI发送接收8位帧结构
SPI_InitStructure.SPI_CPOL = SPI_CPOL_High;	  //串行时钟在不操作时,时钟为高电平
SPI_InitStructure.SPI_CPHA = SPI_CPHA_2Edge;		 //第二个时钟沿开始采样数据
SPI_InitStructure.SPI_NSS = SPI_NSS_Soft;	 //NSS信号由软件(使用SSI位)管理
SPI_InitStructure.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_2; //定义波特率预分频的值:波特率预分频值为8
SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_MSB;	//数据传输从MSB位开始
SPI_InitStructure.SPI_CRCPolynomial = 7;			 //CRC值计算的多项式
SPI_Init(SPI3, &SPI_InitStructure);

➢ 配置SPI3 DMA功能。

DMA介绍:

直接存储器存取(DMA)用来提供在外设和存储器之间或者存储器和存储器之间的高速数据传输。无须CPU干预,数据可以通过DMA快速地移动,这就节省了CPU的资源来做其他操作。两个DMA控制器有12个通道(DMA1有7个通道,DMA2有5个通道),每个通道专门用来管理来自于一个或多个外设对存储器访问的请求。还有一个仲裁器来协调各个DMA请求的优先权。

总之,当我们的功能中涉及数据传输功能时,例如ADC、DMA、USART等,为了使数据传输更快,可以在数据传输中加上DMA功能,使能DMA发送或接收。

DMA1 各个通道对应表:

DMA2 各个通道对应表:

我们项目用到是DMA2的发送功能,因为我们只需要对TFTLCD显示屏发送数据。

//使能DMA发送
DMA_DeInit(DMA2_Channel2); 
DMA_InitStructure.DMA_PeripheralBaseAddr = (u32)&SPI3->DR; //数据传输目标地址
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralDST; 	数据传输方向,从内存读取发送到外设
DMA_InitStructure.DMA_BufferSize = 1024;            //发送Buff数据大小
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable; //设置外设地址是否递增
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;  //设置内存地址是否递增
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte; //外设数据宽度为8位
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte; //内存数据宽度为8位	DMA_InitStructure.DMA_Mode =   DMA_Mode_Normal;                         //普通缓存模式
DMA_InitStructure.DMA_Priority = DMA_Priority_Medium;                        //高优先级
DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;            //禁止DMA2个内存相互访问
DMA_Init(DMA2_Channel2, &DMA_InitStructure);        //初始化DMA,SPI在DMA1的通道2SPI_I2S_DMACmd(SPI3,SPI_I2S_DMAReq_Tx,ENABLE); /使能SPI2 DMA发送功能*/	
SPI_Cmd(SPI3, ENABLE);//使能SPI2
SPI3 DMA 数据发送函数
// SPI3 DMA发送
void DMA_SPI3_TX(unsigned char *buffer,unsigned short len)
{DMA2->IFCR |=(0xf<<4);    //清除通道2上面所有的标志位DMA2_Channel2->CNDTR=len; //设置要传输的数据长度DMA2_Channel2->CMAR=(u32)buffer; //设置RAM缓冲区地址DMA2_Channel2->CCR|=0x1;   ///启动DMAwhile(!(DMA2->ISR&(1<<5))) ; ///等待数据数据传输完成DMA2_Channel2->CCR &=(uint32_t)~0x1;//关闭DMA
}
void LCD_Writ_Bus(unsigned char dat) 
{	LCD_CS_Clr();DMA_SPI3_TX(&dat,1);
}
其他LCD脚位控制函数
void hal_Oled_Display_on(void)
{LCD_BLK_Set();
}void hal_Oled_Display_off(void)
{LCD_BLK_Clr();
}void hal_oled_RestH(void)
{LCD_RES_Set();
}
void hal_oled_RestL(void)
{LCD_RES_Clr();
}
LCD指令和数据发送函数
/******************************************************************************函数说明:LCD写入数据入口数据:dat 写入的数据返回值:  无
******************************************************************************/
void LCD_WR_DATA8(unsigned char dat)
{DMA_SPI3_TX(dat);
}/******************************************************************************函数说明:LCD写入数据入口数据:dat 写入的数据返回值:  无
******************************************************************************/
void LCD_WR_DATA(unsigned short dat)
{unsigned char d[2];d[0] = dat>>8;d[1] = dat;DMA_SPI3_TX(&d[0],2);
}/******************************************************************************函数说明:LCD写入命令入口数据:dat 写入的命令返回值:  无
******************************************************************************/
void LCD_WR_REG(unsigned char dat)
{LCD_DC_Clr();//写命令LCD_Writ_Bus(dat);LCD_DC_Set();//写数据
}

以上内容都是hal_tftlcd.c 和hal_tftlcd.h文件内容,都是有关于stm32外设 DMA SPI3 的初始化的函数.

以下内容将会是mt_tftlcd.c 和mt_tftlcd.h文件内容,都是有关于模块 LCD屏幕 的初始化内容,LCD屏幕模块的初始化都是基于stm32外设初始化的函数写的,所以模块的初始化函数都是调用外设初始化函数组合而成的,底层就是stm32外设的初始化函数,模块的初始化函数和代码,相对来说是应用层代码。所以,mt文件中是应用层驱动代码,hal文件中是底层驱动代码。

LCD屏幕初始化和LCD填充函数

LCD驱动和LCD相关其他驱动函数,我们直接从官方参考的例程移植过来使用即可,不需要自己深入的研究。

void mt_tftlcd_init(void);

LCD_Fill(unsigned short xsta,unsigned short ysta,unsigned short xend,unsigned short yend,unsigned short color);

注意:不论是底层驱动代码还是应用层驱动代码,都是基于配置STM32寄存器写的程序,不要求深入研究,会调用即可;应用层驱动程序是基于底层驱动程序编程的。

mt_tftlcd.c代码

#include "mt_Tftlcd.h"
#include "hal_tftlcd.h"static void hal_tftlcd_Delay(unsigned int de);
unsigned char ColorBuf[640];void mt_tftlcd_init(void)
{hal_tftlcdConfig();//初始化GPIOhal_tftlcd_Delay(10000);hal_oled_RestL();//复位hal_tftlcd_Delay(10000);hal_oled_RestH();hal_tftlcd_Delay(100);//************* Start Initial Sequence **********//LCD_WR_REG(0x11);hal_tftlcd_Delay(10000);//delay_ms(100); //Delay 120msLCD_WR_REG(0X36);// Memory Access Controlif(USE_HORIZONTAL==0)LCD_WR_DATA8(0x00);else if(USE_HORIZONTAL==1)LCD_WR_DATA8(0xC0);else if(USE_HORIZONTAL==2)LCD_WR_DATA8(0x70);else LCD_WR_DATA8(0xA0);LCD_WR_REG(0X3A);// LCD_WR_DATA8(0X03);   //12bitLCD_WR_DATA8(0X05);  //--------------------------------ST7789S Frame rate setting-------------------------LCD_WR_REG(0xb2);LCD_WR_DATA8(0x0c);LCD_WR_DATA8(0x0c);LCD_WR_DATA8(0x00);LCD_WR_DATA8(0x33);LCD_WR_DATA8(0x33);LCD_WR_REG(0xb7);LCD_WR_DATA8(0x35);//---------------------------------ST7789S Power setting-----------------------------LCD_WR_REG(0xbb);LCD_WR_DATA8(0x35);LCD_WR_REG(0xc0);LCD_WR_DATA8(0x2c);LCD_WR_REG(0xc2);LCD_WR_DATA8(0x01);LCD_WR_REG(0xc3);LCD_WR_DATA8(0x13);LCD_WR_REG(0xc4);LCD_WR_DATA8(0x20);LCD_WR_REG(0xc6);LCD_WR_DATA8(0x0f);LCD_WR_REG(0xca);LCD_WR_DATA8(0x0f);LCD_WR_REG(0xc8);LCD_WR_DATA8(0x08);LCD_WR_REG(0x55);LCD_WR_DATA8(0x90);LCD_WR_REG(0xd0);LCD_WR_DATA8(0xa4);LCD_WR_DATA8(0xa1);//--------------------------------ST7789S gamma setting------------------------------LCD_WR_REG(0xe0);LCD_WR_DATA8(0xd0);LCD_WR_DATA8(0x00);LCD_WR_DATA8(0x06);LCD_WR_DATA8(0x09);LCD_WR_DATA8(0x0b);LCD_WR_DATA8(0x2a);LCD_WR_DATA8(0x3c);LCD_WR_DATA8(0x55);LCD_WR_DATA8(0x4b);LCD_WR_DATA8(0x08);LCD_WR_DATA8(0x16);LCD_WR_DATA8(0x14);LCD_WR_DATA8(0x19);LCD_WR_DATA8(0x20);LCD_WR_REG(0xe1);LCD_WR_DATA8(0xd0);LCD_WR_DATA8(0x00);LCD_WR_DATA8(0x06);LCD_WR_DATA8(0x09);LCD_WR_DATA8(0x0b);LCD_WR_DATA8(0x29);LCD_WR_DATA8(0x36);LCD_WR_DATA8(0x54);LCD_WR_DATA8(0x4b);LCD_WR_DATA8(0x0d);LCD_WR_DATA8(0x16);LCD_WR_DATA8(0x14);LCD_WR_DATA8(0x21);LCD_WR_DATA8(0x20);LCD_WR_REG(0x29);hal_Oled_Display_on();//打开背光LCD_Fill(0,0,LCD_W,LCD_H,RED);
} /******************************************************************************函数说明:设置起始和结束地址入口数据:x1,x2 设置列的起始和结束地址y1,y2 设置行的起始和结束地址返回值:  无
******************************************************************************/
void LCD_Address_Set(unsigned short x1,unsigned short y1,unsigned short x2,unsigned short y2)
{LCD_WR_REG(0x2a);//列地址设置LCD_WR_DATA(x1+2);LCD_WR_DATA(x2+2);LCD_WR_REG(0x2b);//行地址设置LCD_WR_DATA(y1+1);LCD_WR_DATA(y2+1);LCD_WR_REG(0x2c);//储存器写
}static void hal_tftlcd_Delay(unsigned int de)
{while(de--);
}void LCD_Fill(unsigned short xsta,unsigned short ysta,unsigned short xend,unsigned short yend,unsigned short color)
{          unsigned short i; LCD_Address_Set(xsta,ysta,xend-1,yend-1);//设置显示范围for(i=0;i<xend;i++){ColorBuf[i++] = color>>8;ColorBuf[i] = color;}for(i=ysta;i<yend*2;i++){		DMA_SPI3_TX(ColorBuf,xend);}	
}

mt_Tftlcd.h代码

#ifndef ____MT_TFTLCD_H_
#define ____MT_TFTLCD_H_#define USE_HORIZONTAL 3  //设置横屏或者竖屏显示 0或1为竖屏 2或3为横屏#if USE_HORIZONTAL==0||USE_HORIZONTAL==1#define LCD_W 240
#define LCD_H 320#else
#define LCD_W 320
#define LCD_H 240
#endif///RGB565
#define WHITE         	 0xFFFF
#define BLACK         	 0x0000	  
#define BLUE           	 0x001F  
#define BRED                  0XF81F
#define GRED 		 0XFFE0
#define GBLUE	         0X07FF
#define RED           	         0xF800
#define MAGENTA       	 0xF81F
#define GREEN         	 0x07E0
#define CYAN          	 0x7FFF
#define YELLOW        	 0xFFE0
#define BROWN 			     0XBC40 //棕色
#define BRRED 			     0XFC07 //棕红色
#define GRAY  			     0X8430 //灰色
#define DARKBLUE      	 0X01CF	//深蓝色
#define LIGHTBLUE      	 0X7D7C	//浅蓝色  
#define GRAYBLUE       	 0X5458 //灰蓝色
#define LIGHTGREEN     	 0X841F //浅绿色
#define LGRAY 			     0XC618 //浅灰色(PANNEL),窗体背景色
#define LGRAYBLUE        0XA651 //浅灰蓝色(中间层颜色)
#define LBBLUE           0X2B12 //浅棕蓝色(选择条目的反色)enum
{FORTSIZE_12 = 12,FORTSIZE_16 = 16,	FORTSIZE_24 = 24,FORTSIZE_32 = 32,	FORTSIZE_48 = 48,	
};#define HUE_LCD_FONT     WHITE
#define HUE_LCD_BACK     BLACK//YELLOW  //BLACK//
#define HUE_FONT_BACK    GRAYvoid mt_tftlcd_init(void);
void LCD_Fill(unsigned short xsta,unsigned short ysta,unsigned short xend,unsigned short yend,unsigned short color);
#endif

功能测试验证

LCD屏幕全屏显示黄色,表示驱动完成OK。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/87410.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Jmeter(二十九):Jmeter常用场景梳理

一、每秒钟固定调用次数 如果想控制每秒发送请求数量,仅仅通过线程数与循环次数是不够的,因为这只能控制发送总数,而要控制每秒发送数量,需要线程数与常数吞吐量控制器的搭配使用,这种场景在性能测试中使用不多。 例如每秒钟调用30次接口,那么把线程数设置为30,将常数…

基于Java+SpringBoot+Vue前后端分离社区医院管理系统设计和实现

博主介绍&#xff1a;✌全网粉丝30W,csdn特邀作者、博客专家、CSDN新星计划导师、Java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专…

SpringCluod深入教程

1.Nacos配置管理 Nacos除了可以做注册中心&#xff0c;同样可以做配置管理来使用。 1.1.统一配置管理 当微服务部署的实例越来越多&#xff0c;达到数十、数百时&#xff0c;逐个修改微服务配置就会让人抓狂&#xff0c;而且很容易出错。我们需要一种统一配置管理方案&#…

SpringCloud入门——微服务调用的方式 RestTemplate的使用 使用nacos的服务名初步(Ribbon负载均衡)

目录 引出微服务之间的调用几种调用方法spring提供的组件 RestTemplate的使用导入依赖生产者模块单个配置的情况多个配置的情况没加.yaml的报错【报错】两个同名配置【细节】 完整代码config配置主启动类controller层 消费者模块进行配置restTemplate配置类controller层 使用na…

使用ffmpeg将WebM文件转换为MP4文件的简单应用程序

tiktok网上下载的short视频是webm格式的&#xff0c;有些程序无法处理该程序&#xff0c;比如roop程序&#xff0c;本文介绍了如何使用wxPython库创建一个简单的GUI应用程序&#xff0c;用于将WebM文件转换为MP4文件。这个应用程序使用Python编写&#xff0c;通过调用FFmpeg命令…

【Go 基础篇】探索Go语言中Map的神奇操作

嗨&#xff0c;Go语言的学习者们&#xff01;在编程世界中&#xff0c;Map是一个强大而又有趣的工具&#xff0c;它可以帮助我们高效地存储和操作键值对数据。Map就像是一本字典&#xff0c;可以让我们根据关键字&#xff08;键&#xff09;快速找到对应的信息&#xff08;值&a…

流媒体内容分发终极解决方案:当融合CDN与P2P视频交付结合

前言 随着互联网的发展&#xff0c;流媒体视频内容日趋增多&#xff0c;已经成为互联网信息的主要承载方式。相对传统的文字&#xff0c;图片等传统WEB应用&#xff0c;流媒体具有高数据量&#xff0c;高带宽、高访问量和高服务质量要求的特点&#xff0c;而现阶段互联网“尽力…

Java之API详解之Object类的详细解析

4 Object类 4.1 概述 tips&#xff1a;重点讲解内容 查看API文档&#xff0c;我们可以看到API文档中关于Object类的定义如下&#xff1a; Object类所在包是java.lang包。Object 是类层次结构的根&#xff0c;每个类都可以将 Object 作为超类。所有类都直接或者间接的继承自该类…

四层负载均衡的NAT模型与DR模型推导 | 京东物流技术团队

导读 本文首先讲述四层负载均衡技术的特点&#xff0c;然后通过提问的方式推导出四层负载均衡器的NAT模型和DR模型的工作原理。通过本文可以了解到四层负载均衡的技术特点、NAT模型和DR模型的工作原理、以及NAT模型和DR模型的优缺点。读者可以重点关注NAT模型到DR模型演进的原…

phpspreadsheet导出excel自动获得列,数字下标

安装composer require phpoffice/phpspreadsheetuse PhpOffice\PhpSpreadsheet\Spreadsheet; use PhpOffice\PhpSpreadsheet\Writer\Xlsx; use PhpOffice\PhpSpreadsheet\Style\Border;$spreadsheet new Spreadsheet(); $sheet $spreadsheet->getActiveSheet();//从65开&a…

2023-8-29 有向图的拓扑排序

题目链接&#xff1a;有向图的拓扑排序 #include <cstring> #include <iostream> #include <algorithm>using namespace std;const int N 100010;int n, m; int h[N], e[N], ne[N], idx;int q[N], d[N];void add(int a, int b) {e[idx] b, ne[idx] h[a]…

JavaScript设计模式(二)——简单工厂模式、抽象工厂模式

个人简介 &#x1f440;个人主页&#xff1a; 前端杂货铺 &#x1f64b;‍♂️学习方向&#xff1a; 主攻前端方向&#xff0c;正逐渐往全干发展 &#x1f4c3;个人状态&#xff1a; 研发工程师&#xff0c;现效力于中国工业软件事业 &#x1f680;人生格言&#xff1a; 积跬步…