A - Lucky Direction
点击查看代码
void solve() {std::vector<std::string> a{"N","S", "W", "E", "NE", "SW", "NW", "SE"};std::string s;std::cin >> s;int p = std::find(a.begin(), a.end(), s) - a.begin();std::cout << a[p ^ 1] << "\n";
}
B - Seek Grid
点击查看代码
void solve() {int n, m;std::cin >> n >> m;std::vector<std::string> s(n), t(m);for (int i = 0; i < n; ++ i) {std::cin >> s[i];} for (int i = 0; i < m; ++ i) {std::cin >> t[i];}auto check = [&](int a, int b) -> bool {for (int i = 0; i < m; ++ i) {for (int j = 0; j < m; ++ j) {if (s[a + i][b + j] != t[i][j]) {return false;}}}return true;};for (int i = 0; i + m - 1 < n; ++ i) {for (int j = 0; j + m - 1 < n; ++ j) {if (check(i, j)) {std::cout << i + 1 << " " << j + 1 << "\n";return;}}}
}
C - Pigeonhole Query
题意:\(n\)个鸽子开始各在第\(i\)个笼子里,每次会移动一只鸽子到另一个笼子,或者问你有多少个笼子有两个以上的鸽子。
记录每个笼子的鸽子数和每个鸽子在哪个笼子即可。
点击查看代码
void solve() {int n, q;std::cin >> n >> q;std::vector<int> cnt(n, 1), p(n);std::iota(p.begin(), p.end(), 0);int ans = 0;while (q -- ) {int op;std::cin >> op;if (op == 1) {int x, y;std::cin >> x >> y;-- x, -- y;if (cnt[p[x]] == 2) {-- ans;}-- cnt[p[x]];if (cnt[y] == 1){++ ans;}++ cnt[y];p[x] = y;} else {std::cout << ans << "\n";}}
}
D - Gravity
题意:\(n\)个方块向下落,每一时刻,如果最底层填满了方块,就消除这些方块。然后如果有方块不是在最底层并且下面没有方块就会下落。\(q\)次询问问你第\(t + 0.5\)时刻第\(i\)个方块有没有被消除。
模拟消除即可。每次模拟一行的消除,每次找每行高度最低的方块里高度最高的。最多模拟\(n\)次。
点击查看代码
void solve() {int n, m;std::cin >> n >> m;std::vector<int> ans(n, 2e9);std::vector<std::vector<std::pair<int, int> > > a(m);for (int i = 0; i < n; ++ i) {int x, y;std::cin >> x >> y;-- x;a[x].push_back({y, i});}for (int i = 0; i < m; ++ i) {std::sort(a[i].begin(), a[i].end(), std::greater<>());}int time = 0;auto move = [&]() -> bool {int max = 0;for (int i = 0; i < m; ++ i) {if (a[i].empty()) {return false;}max = std::max({max, a[i].back().first - time, 1});}int t = max - 1;for (int i = 0; i < m; ++ i) {ans[a[i].back().second] = time + t;a[i].pop_back();}time += t;return true;};while (move());int q;std::cin >> q;while (q -- ) {int t, x;std::cin >> t >> x;-- x;if (ans[x] >= t) {std::cout << "Yes\n";} else {std::cout << "No\n";}}
}
E - Hierarchical Majority Vote
题意:一个\(3^n\)长度的字符串\(s\)每次会缩短三倍变成\(s'\),如果\(s_{3i}, s_{3i + 1}, s_{3i + 2}\)里有两个以上的1,\(s'_{i}\)就是1,否则是0。最终会变成一个0或者1,现在要你修改最少的字符使得最终结果改变。
可以用递归求出最终结果,每次分成三份一直递归到长度为1就行。然后得到我们需要变成的结果v(v=0或者v=1),最后依然可以递归求,求出每个部分变成v需要几次操作,取最小的两个部分即可。
点击查看代码
void solve() {int n;std::cin >> n;n = std::pow(3, n);std::string s;std::cin >> s;auto dfs = [&](auto self, int l, int r) -> int {if (l == r) {return s[l - 1] - '0';}int len = (r - l + 1) / 3;return self(self, l, l + len - 1) + self(self, l + len, l + 2 * len - 1) + self(self, l + 2 * len, r) >= 2;};int v = dfs(dfs, 1, n);auto dfs1 = [&](auto self, int l, int r) -> int {if (l == r) {return s[l - 1] - '0' == v;}int len = (r - l + 1) / 3;int a = self(self, l, l + len - 1);int b = self(self, l + len, l + 2 * len - 1);int c = self(self, l + 2 * len, r);std::vector<int> d{a, b, c};std::sort(d.begin(), d.end());return d[0] + d[1];};// std::cout << v << "\n";std::cout << dfs1(dfs1, 1, n) << "\n";
}
F - K-th Largest Triplet
题意:给你三个数组,求所有\(i, j, k\)中,\(a_i b_j + b_j c_k + a_i c_k\)中第\(m\)大的。
三个数组从大到小排序后用优先级队列模拟即可,一开始把\(\{val(1, 1, 1), 1, 1, 1\}\)入队,分别代表\(i,j, k\)得到的值以及\(i, j, k\)的值。注意每个\(i, j, k\)可能被多个状态转移,用set记录一下。
点击查看代码
void solve() {int n, m;std::cin >> n >> m;std::vector<i64> a(n), b(n), c(n);for (int i = 0; i < n; ++ i) {std::cin >> a[i];}for (int i = 0; i < n; ++ i) {std::cin >> b[i];}for (int i = 0; i < n; ++ i) {std::cin >> c[i];}std::sort(a.begin(), a.end(), std::greater<i64>());std::sort(b.begin(), b.end(), std::greater<i64>());std::sort(c.begin(), c.end(), std::greater<i64>());auto get = [&](int i, int j, int k) -> i64 {return a[i] * b[j] + b[j] * c[k] + a[i] * c[k];};std::priority_queue<std::array<i64, 4>> heap;heap.push({get(0, 0, 0), 0, 0, 0});std::set<std::array<int, 3> > s;s.insert({0, 0, 0});while ( -- m) {auto [val, i, j, k] = heap.top(); heap.pop();if (i + 1 < n && !s.count({i + 1, j, k})) {s.insert({i + 1, j, k});heap.push({get(i + 1, j, k), i + 1, j, k});}if (j + 1 < n && !s.count({i, j + 1, k})) {s.insert({i, j + 1, k});heap.push({get(i, j + 1, k), i, j + 1, k});}if (k + 1 < n && !s.count({i, j, k + 1})) {s.insert({i, j, k + 1});heap.push({get(i, j, k + 1), i, j, k + 1});}}std::cout << heap.top()[0] << "\n";
}
G - Many LCS
待补。