功率MOS管的参数说明

news/2025/2/21 14:57:07/文章来源:https://www.cnblogs.com/seanhn/p/18729185

图解功率MOS管的每一个参数!

 

最大额定参数


 

最大额定参数,所有数值取得条件(Ta=25℃)

 

图1.jpg

 

VDSS 最大漏-源电压

在栅源短接,漏-源额定电压(VDSS)是指漏-源未发生雪崩击穿前所能施加的最大电压。根据温度的不同,实际雪崩击穿电压可能低于额定VDSS。关于V(BR)DSS的详细描述请参见静电学特性。

VGS 最大栅源电压

VGS额定电压是栅源两极间可以施加的最大电压。设定该额定电压的主要目的是防止电压过高导致的栅氧化层损伤。实际栅氧化层可承受的电压远高于额定电压,但是会随制造工艺的不同而改变,因此保持VGS在额定电压以内可以保证应用的可靠性。

ID - 连续漏电流

ID定义为芯片在最大额定结温TJ(max)下,管表面温度在25℃或者更高温度下,可允许的最大连续直流电流。该参数为结与管壳之间额定热阻RθJC和管壳温度的函数:

 

图2.jpg

 

ID中并不包含开关损耗,并且实际使用时保持管表面温度在25℃(Tcase)也很难。因此,硬开关应用中实际开关电流通常小于ID 额定值@ TC = 25℃的一半,通常在1/3~1/4。补充,如果采用热阻JA的话可以估算出特定温度下的ID,这个值更有现实意义。

IDM - 脉冲漏极电流

该参数反映了器件可以处理的脉冲电流的高低,脉冲电流要远高于连续的直流电流。定义IDM的目的在于:线的欧姆区。对于一定的栅-源电压,MOSFET导通后,存在最大的漏极电流。如图所示,对于给定的一个栅-源电压,如果工作点位于线性区域内,漏极电流的增大会提高漏-源电压,由此增大导通损耗。长时间工作在大功率之下,将导致器件失效。因此,在典型栅极驱动电压下,需要将额定IDM设定在区域之下。区域的分界点在Vgs和曲线相交点。

 

图3.jpg

 

因此需要设定电流密度上限,防止芯片温度过高而烧毁。这本质上是为了防止过高电流流经封装引线,因为在某些情况下,整个芯片上最“薄弱的连接”不是芯片,而是封装引线。

考虑到热效应对于IDM的限制,温度的升高依赖于脉冲宽度,脉冲间的时间间隔,散热状况,RDS(on)以及脉冲电流的波形和幅度。单纯满足脉冲电流不超出IDM上限并不能保证结温不超过最大允许值。可以参考热性能与机械性能中关于瞬时热阻的讨论,来估计脉冲电流下结温的情况。

PD - 容许沟道总功耗

容许沟道总功耗标定了器件可以消散的最大功耗,可以表示为最大结温和管壳温度为25℃时热阻的函数。

TJ, TSTG - 工作温度和存储环境温度的范围

这两个参数标定了器件工作和存储环境所允许的结温区间。设定这样的温度范围是为了满足器件最短工作寿命的要求。如果确保器件工作在这个温度区间内,将极大地延长其工作寿命。

EAS - 单脉冲雪崩击穿能量

如果电压过冲值(通常由于漏电流和杂散电感造成)未超过击穿电压,则器件不会发生雪崩击穿,因此也就不需要消散雪崩击穿的能力。雪崩击穿能量标定了器件可以容忍的瞬时过冲电压的安全值,其依赖于雪崩击穿需要消散的能量。

定义额定雪崩击穿能量的器件通常也会定义额定EAS。额定雪崩击穿能量与额定UIS具有相似的意义。EAS标定了器件可以安全吸收反向雪崩击穿能量的高低。

L是电感值,iD为电感上流过的电流峰值,其会突然转换为测量器件的漏极电流。电感上产生的电压超过MOSFET击穿电压后,将导致雪崩击穿。雪崩击穿发生时,即使 MOSFET处于关断状态,电感上的电流同样会流过MOSFET器件。电感上所储存的能量与杂散电感上存储,由MOSFET消散的能量类似。

MOSFET并联后,不同器件之间的击穿电压很难完全相同。通常情况是:某个器件率先发生雪崩击穿,随后所有的雪崩击穿电流(能量)都从该器件流过。

EAR - 重复雪崩能量

重复雪崩能量已经成为“工业标准”,但是在没有设定频率,其它损耗以及冷却量的情况下,该参数没有任何意义。散热(冷却)状况经常制约着重复雪崩能量。对于雪崩击穿所产生的能量高低也很难预测。

额定EAR的真实意义在于标定了器件所能承受的反复雪崩击穿能量。该定义的前提条件是:不对频率做任何限制,从而器件不会过热,这对于任何可能发生雪崩击穿的器件都是现实的。在验证器件设计的过程中,最好可以测量处于工作状态的器件或者热沉的温度,来观察MOSFET器件是否存在过热情况,特别是对于可能发生雪崩击穿的器件。

IAR - 雪崩击穿电流

对于某些器件,雪崩击穿过程中芯片上电流集边的倾向要求对雪崩电流IAR进行限制。这样,雪崩电流变成雪崩击穿能量规格的“精细阐述”;其揭示了器件真正的能力。

 

图4.jpg

 

 

静态电特性


 

图5.jpg

 

V(BR)DSS:漏-源击穿电压(破坏电压)

V(BR)DSS(有时候叫做VBDSS)是指在特定的温度和栅源短接情况下,流过漏极电流达到一个特定值时的漏源电压。这种情况下的漏源电压为雪崩击穿电压。

V(BR)DSS是正温度系数,温度低时V(BR)DSS小于25℃时的漏源电压的最大额定值。在-50℃, V(BR)DSS大约是25℃时最大漏源额定电压的90%。

VGS(th),VGS(off):阈值电压

VGS(th)是指加的栅源电压能使漏极开始有电流,或关断MOSFET时电流消失时的电压,测试的条件(漏极电流,漏源电压,结温)也是有规格的。正常情况下,所有的MOS栅极器件的阈值电压都会有所不同。因此,VGS(th)的变化范围是规定好的。VGS(th)是负温度系数,当温度上升时,MOSFET将会在比较低的栅源电压下开启。

RDS(on):导通电阻

RDS(on)是指在特定的漏电流(通常为ID电流的一半)、栅源电压和25℃的情况下测得的漏-源电阻。

IDSS:零栅压漏极电流

IDSS是指在当栅源电压为零时,在特定的漏源电压下的漏源之间泄漏电流。既然泄漏电流随着温度的增加而增大,IDSS在室温和高温下都有规定。漏电流造成的功耗可以用IDSS乘以漏源之间的电压计算,通常这部分功耗可以忽略不计。

IGSS - 栅源漏电流

IGSS是指在特定的栅源电压情况下流过栅极的漏电流。

 

动态电特性

 

图6.jpg

 

Ciss:输入电容

将漏源短接,用交流信号测得的栅极和源极之间的电容就是输入电容。Ciss是由栅漏电容Cgd和栅源电容Cgs并联而成,或者Ciss = Cgs +Cgd。当输入电容充电致阈值电压时器件才能开启,放电致一定值时器件才可以关断。因此驱动电路和Ciss对器件的开启和关断延时有着直接的影响。

Coss:输出电容

将栅源短接,用交流信号测得的漏极和源极之间的电容就是输出电容。Coss是由漏源电容Cds和栅漏电容Cgd并联而成,或者Coss = Cds +Cgd对于软开关的应用,Coss非常重要,因为它可能引起电路的谐振

Crss:反向传输电容

在源极接地的情况下,测得的漏极和栅极之间的电容为反向传输电容。反向传输电容等同于栅漏电容。Cres =Cgd,反向传输电容也常叫做米勒电容,对于开关的上升和下降时间来说是其中一个重要的参数,他还影响这关断延时时间。电容随着漏源电压的增加而减小,尤其是输出电容和反向传输电容。

 

图7.jpg

 

Qgs,Qgd,和Qg:栅电荷

栅电荷值反应存储在端子间电容上的电荷,既然开关的瞬间,电容上的电荷随电压的变化而变化,所以设计栅驱动电路时经常要考虑栅电荷的影响。

Qgs从0电荷开始到第一个拐点处,Qgd是从第一个拐点到第二个拐点之间部分(也叫做“米勒”电荷),Qg是从0点到VGS等于一个特定的驱动电压的部分。

 

图8.jpg

 

漏电流和漏源电压的变化对栅电荷值影响比较小,而且栅电荷不随温度的变化。测试条件是规定好的。栅电荷的曲线图体现在数据表中,包括固定漏电流和变化漏源电压情况下所对应的栅电荷变化曲线。在图中平台电压VGS(pl)随着电流的增大增加的比较小(随着电流的降低也会降低)。平台电压也正比于阈值电压,所以不同的阈值电压将会产生不同的平台电压。

 

下面这个图更加详细,应用一下:

 

图9.jpg

 

td(on):导通延时时间

导通延时时间是从当栅源电压上升到10%栅驱动电压时到漏电流升到规定电流的10%时所经历的时间。

td(off):关断延时时间

关断延时时间是从当栅源电压下降到90%栅驱动电压时到漏电流降至规定电流的90%时所经历的时间。这显示电流传输到负载之前所经历的延迟。

tr:上升时间

上升时间是漏极电流从10%上升到90%所经历的时间。

tf:下降时间

下降时间是漏极电流从90%下降到10%所经历的时间。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/887611.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

安卓系统远程控制电脑方法,手机远控教程,ToDesk工具

不知道大家有没有觉得手机、平板虽然很好用,却也仍存在有很多替代不了电脑的地方。 就比如说撰写文档、做数据报表啥的就不如PC端操作般方便,就跟别说PS修图、AE视频剪辑等需高性能设备来带动才易用的了。 好在也是有对策可解决,装个ToDesk远程控制工具便能实现各设备的互联…

功率器件热设计基础(八)——利用瞬态热阻计算二极管浪涌电流

上一篇讲了两种热等效电路模型,Cauer模型和Foster模型,这一篇以二极管的浪涌电流为例,讲清瞬态热阻曲线的应用。/ 前言 / 功率半导体热设计是实现IGBT、碳化硅SiC高功率密度的基础,只有掌握功率半导体的热设计基础知识,才能完成精确热设计,提高功率器件的利用率,降低系统…

利用 Sapnco 在.net/c# 中跨系统调用 SAP RFC 功能,执行SAP中的函数

利用Sapnco 在.net/c# 中跨系统调用 SAP RFC 功能,执行SAP中的函数 Sapnco -C#中使用的核心组件,sap官网有下,本文使用的版本在 framework 平台使用, sap 官网地址,但是下载要权限,全名称为: SAP Connector for Microsoft .NET ,链接:https://support.sap.com/en/pro…

SAP咨询公司排名探析:谁执牛耳?

SAP作为全球领先的软件集成供应商,其提供的ERP、CRM、SCM及BI等解决方案深受企业青睐。而SAP咨询公司,作为SAP软件实施、咨询与运维服务。如何评判这些咨询公司的实力呢?以下,我们将从分类、评估指标及领先公司等方面进行深入探讨。一、SAP咨询公司的双轨并行SAP咨询公司大…

Jmeter 自定义的respCode不是0就报异常

在实际使用中,后台其实已经对异常的进行了处理,response body 返回来的,都是正常的请求响应; 这个时候,则需要通过 respCode 进行判断该请求是否是有效响应。 如响应报文如下:{"respCode": 0,"errMsg": null,"data": 100000 } 处理:对 …

mysql 索引页存储关系

前言 简单介绍一下页存储的关系。 正文 在前文中,我们已经知道了页存储的内怎么去查询的数据的,也就两点。记录根据主键(索引)按照顺序链式存储有一个page directory,里面有槽,可以快速定位到槽,然后就可以从链式存储的某个点进行分组查询理论上这样在一页内查询还是非常o…

为什么你的客户留不住?可能是CRM没用对!

最近同事跟我抱怨: ——“营销活动越做越多,可是活跃的客户突然就不见了。” ——”跟客户明明聊的好好的,怎么一转头就不合作了?“ ——“客户一走,业绩没保障,我可太焦虑了😭!!!” 客户流失率越来越高,不仅影响个人业绩,从长远来看,还会影响到公司品牌的信誉和…

如何在JMeter中配置断言,将非200状态码视为测试成功

如何在JMeter中配置断言,将非200状态码视为测试成功 引言 在接口测试中,HTTP响应状态码是判断请求是否成功的重要依据。通常情况下,状态码200表示请求成功,而其他状态码则可能表示各种类型的错误。然而,在某些特定场景下,我们可能期望接收到非200的状态码,并将其视为测试…

CDN大致原理

没有CDN加速情况下对于资源的请求路径: 增加了CDN(content delivery network)服务后的请求路径:

自然语言转SQL避坑指南:FocusSearch如何用两步法碾压传统大模型方案?

在数据驱动的时代,企业每天需要处理海量结构化数据,但非技术人员与数据库之间的“最后一公里”鸿沟始终存在。传统Text2SQL技术试图用自然语言直接生成SQL查询,然而大模型的黑箱特性、高昂成本及不可控的幻觉问题,使得这一目标长期陷入“理想丰满,现实骨感”的困境。本文将…

P1044 [NOIP 2003 普及组] 栈——卡特兰数

题目背景 栈是计算机中经典的数据结构,简单的说,栈就是限制在一端进行插入删除操作的线性表。 栈有两种最重要的操作,即 pop(从栈顶弹出一个元素)和 push(将一个元素进栈)。 栈的重要性不言自明,任何一门数据结构的课程都会介绍栈。宁宁同学在复习栈的基本概念时,想到…