【二等奖方案】大规模金融图数据中异常风险行为模式挖掘赛题「Aries」解题思路

第十届CCF大数据与计算智能大赛(2022 CCF BDCI)已圆满结束,大赛官方竞赛平台DataFountain(简称DF平台)正在陆续释出各赛题获奖队伍的方案思路,欢迎广大数据科学家交流讨论。

本方案为【大规模金融图数据中异常风险行为模式挖掘】赛题的二等奖获奖方案,赛题地址:https://www.datafountain.cn/competitions/586

图片

获奖团队简介

团队名称:Aries

团队成员:本团队属校企联合团队,由江苏电信和北京师范大学组成,主要研究方向包括数据挖掘,云原生,AI,应用统计分析等,团队具有一定的项目经历和比赛经验。

所获奖项:二等奖

摘   要

随着图数据的日益普及,图挖掘已成为图分析的一项基本任务,其中频繁子图及模式挖掘作为重要一环已经被广泛应用在各个领域。在这个方向已经有大量的文献被发表,并取得了巨大的进步。随着频繁模式挖掘的深入研究,图模型被广泛地应用于为各种事务建模,因此图挖掘的研究显得越来越重要。

针对本赛题要求,本文主要做了以下四个方面工作:1、挖掘出满足阈值要求的的频繁模式。2、精确计算模式频繁的频繁度。3、面向数据编程,尽可能优化程序处理时间。4、使用OpenMP多线程框架,使程序在各个阶段的性能都得到优化。根据本队伍实际执行结果证明上述处理过程可以快速解决问题。

关 键 词

频繁子图,模式挖掘,频繁度

1 背景介绍

1.1 频繁子图挖掘介绍

频繁子图挖掘是数据挖掘中一个非常广泛的应用。频繁子图挖掘是指从大量的图中挖掘出满足给定支持度的频繁子图,同时算法需要保证这些频繁图不能重复。频繁模式挖掘主要就是应用两种策略——Apriori和Growth。最早的AGM和FSG就分别实现了这两重策略的基本思想。gSpan是一个非常高效的算法,它利用dfs-code序列对搜索树进行编码,并且制定一系列比较规则,从而保证最后只得到序列“最小”的频繁图集合。在频繁模式挖掘算法中,常用方法是先计算候选模式的可能性空间,再确定频繁度,由于查找子图模式需要判断子图同构,而判断子图同构是NP完全问题[1],因此计算代价非常大。基于单一大图频繁子图挖掘、频繁图模式挖掘算法GRAMI[2]可以利用多种巧妙的剪枝算法提升挖掘性能。子图生成过程中采用了GSAPN中的最右路扩展,从而保证了搜索空间是完备的。在计算图的支持度时,理论上也是精确的。但算法也提供了支持度的近似算法,近似算法保证了挖掘的子图一定是频繁的,但不是所有频繁的子图都能获得,如果要获得所有频繁子图需要调整支持度大小。 

1.2 本题方案简介

本赛题使用简化的金融仿真数据,数据带有时间戳和金额的账户间交易、转账等数据。基于此数据自动挖掘出不小于频繁度(f >= 10000)的频繁子图模式集合。判定子图同构的方法需要属性值匹配,包括交易金额、策略名、业务编码及名称。子图只需匹配到3阶(3条边)子图,频繁度指标需满足单调性要求。

本方案主要将频繁子图挖掘分为两个个阶段:1:剪枝阶段。按题目模式匹配的要求计算出每条边的频繁度,根据单调性要求,将不满足支持度的边去掉,可以为后面挖掘二阶三阶子图省去大量无效遍历。2:精确计算频繁度阶段。利用近似的频繁模式,根据单调性要求,精确计算出满足阈值要求的模式频繁度。具体流程图见图1.

图片

图1

2 算法设计与实现

我们将整体流程细分为5个步骤,分别是输入、构图、剪枝、频繁度计算和输出。首先,需要将数据文检读取进内存,用方便读取的数据结构存储,因为是有向图需要用偏移范围作索引,可以实现根据边起点的随机遍历。之后利用边数据属性值将边编码成一个整数,用整型数组对模式计数,删除不满足支持度要求的边,因为基于单调性,其拓展的图也不频繁。这样可以大大缩小了边的数据规模。对候选模式求频繁度,由于候选模式较少,可以用二维数组遍历一次即可求出所有模式的频繁度。在输入、构图、剪枝和频繁度四个阶段都是用OpenMP并行处理,大大提高了程序运行效率。

2.1 输入和构图

输入部分主要是从点数据文件和边数据文件读入数据,数据约748MB,因为数据量较大,读数据需要花很多时间,因此需要提高文件读取速度,我们团队采用mmap系统调用的方法读取文件,将数据存储到数组中。由于本赛题不仅考察答案的准确率,相同答案的情况下程序的运行时间也作为考察依据,为了加速文件读取速度,我们采用多线程读取,使用mmap映射后,根据文件的首地址和文件长度,按照字节长度将文件分配到多个任务中。上述为点数据的读取。

struct Edge {

    uint32_t to;

    uint32_t amt;

    uint32_t strategy;

    uint32_t buscode;

} *edges;

uint32_t *loc;

边数据读取较为特殊,为了能方便后续算法根据起点可以快速遍历,首先用多线程遍历一次边文件,将每个线程计算出的起点边数和汇总在一个数组loc中,这样若搜索定点s的边的时候,其边的范围就是[loc[s],loc[s+1]]。结构体中只存边的属性和目标点的信息。

2.2 剪枝

读取的原始数据中,很多边是不能满足频繁度要求的,根据单调性的约束,这些边的拓展边也不会满足单调性约束,所以需要将这些无效边删除,这样可以加速后续的处理。本方案使用flag数组标记边的有效性,遍历时遇到无效边,就直接跳过。为了高效计数,我们没有使用dfs-code编码,而是根据边的属性映射到整数上,通过一个整型数组作为计数器。例如一条边的属性为{from:1,to:1,aim:0,strategy:1,buscode:1},由于顶点只有3种类型(account_to_card可以用strategy区分),amt通过剪枝后有10种,strategy有6种,buscode有4种,这条边可以描述为1*3*10*6*4+1*10*6*4+0*6*4+6*4+4,所有边都可以通过此方法映射到对应的整数上。这里有个提升性能的方法,在不影响正确结果的情况下,可以适当将调整阈值调大,不过这样会导致和GRAMI[2]算法同样的问题,如果将阈值调整过大,只能保证挖掘的子图一定是频繁的,但不是所有频繁的子图都能获得,所以要根据图调整。 

2.3 三阶边频繁度计算

三阶频繁度计算就是根据单调性的约束和阈值约束,求出满足条件的模式的频繁度。通过上述对一阶边的剪枝,可以将剩下的边继续拓展到二阶三阶中,也利用单调性和阈值的约束计算,但由于在处理三阶边的时候数值过大,无法将编码映射到整数中,所以在剪枝后要将边的值重新映射到数组中。重新映射后三阶边也可以映射到数据中,映射方式和一条边类似。这样就可以求出满足条件模式的频繁度。

2.4 输出

将计算出的结果使用fastjosn输出到文件中,输出时间占比较少,所以没用多线程处理。

3 实验结果

程序测试的物理机配置为4核 3.4Ghz服务器,操作系统为ubuntu20.04。我们对程序的各个阶段4个线程和单线程进行了比较,结果如下图2,多线程在各个阶段都显著提高运行速度,整个程序在4个线程下只需要执行0.92s,当然这是本地测试环境的结果,由于硬件配置不同,与线上结果有一些差别。

图片

图2

致谢

感谢赛事的所有工作人员,他们默默无闻的努力,无微不至的付出,是支撑大赛顺利运行的坚定基石。感谢队友的努力付出,才能让我们团队进入最终决赛。

参考

[1] Wernicke S. Rasche F. FANMOD: A tool for fast network motif detection. Bioinformatics. 2006. 22(9) : 1152-1153

[2] GraMi:frequent subgraph and pattern mining in a single large graph [J] . Elseidy Mohammed,Abdelhamid Ehab,Skiadopoulos Spiros,Kalnis Panos.  Proceedings of the VLDB Endowment . 2014 (7)


我是行业领先的大数据竞赛平台 @DataFountain ,欢迎广大政企校军单位合作办赛,推动优秀数据人才揭榜挂帅!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/90607.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

问题杂谈(三十七)远程调试linux中的Tomcat

前言 之前调试过Docker里面的java程序,但还没试过直接调试tomcat里面的java程序,今儿个来试试 步骤 Tomcat 修改catlina脚本:vi catlina.sh(bin目录下)找到下面这句,将"localhost:8000"改为”…

RTP协议简介

介绍 RTP,real-time transport protocol,实时传输协议,用于传输具有实时属性的数据。RTP提供端到端的网络传输功能,适用于通过组播或单播网络服务传输实时数据(如音频、视频或仿真数据)的应用。 RTP协议层有两个子协议&#xff…

Python实现自动关键词提取

随着互联网的发展,越来越多的人喜欢在网络上阅读小说。本文将通过详细示例,向您介绍如何使用Python编写爬虫程序来获取网络小说,并利用自然语言处理技术实现自动文摘和关键词提取功能。 1. 网络小说数据抓取 首先,请确保已安装必…

Docker部署gogs仓库

Docker部署gogs Git仓库 拉取镜像 docker pull gogs/gogs查看本地镜像 docker images启动gogs仓库服务 创建数据挂在目录 我在/root目录下创建gogs挂在目录 mkdir gogs启动gogs docker run --namegogs -d -p 10022:22 -p 10880:3000 -v /root/gogs:/data gogs/gogs10022…

vue使用命令npm install 报错 cb() never called!

一.错误说明,npm本身下载就慢,有可能是网络的问题。 二.解决方案,把npm设置成淘宝镜像后,再重新npm install npm config set registry https://registry.npm.taobao.org 三.还是不行,还会出现同样的问题,那接下来先清理一下npm缓存 npm cache…

MATLAB实现AHP层次分析法——以情人节选取礼物为例

问题背景: 情人节来临之际,广大直男(女)同胞在给异性朋友选购礼物时会遇到难题——什么才是礼物好坏最重要的标准?基于层次分析法AHP进行计算,得出最高权重的指标,给出各位朋友选购礼物的一种思…

mysql 间隙锁原理深度详解

目录 一、前言 二、mysql之mvcc 2.1 什么是mvcc 2.2 mvcc组成 2.2.1 Undo log 多版本链 2.2.2 ReadView 2.2.3 快照读与当前读 三、RR级别下的事务问题 3.1 RR隔离级别解决的问题 3.1.1 幻读问题 3.2 幻读效果演示 3.2.1 准备测试表和数据 3.2.2 修改事务级别 3.…

修改linux中tomcat的端口

随便修改一个 以8055为例子 开放8081端口 firewall-cmd --permanent --add-port8081/tcp firewall-cmd --reload firewall-cmd --list-all

java基础-----第三篇

系列文章目录 文章目录 系列文章目录前言一、final二、String、StringBuffer、StringBuilder前言 一、final 最终的 修饰类:表示类不可被继承 修饰方法:表示方法不可被子类覆盖,但是可以重载 修饰变量:表示变量一旦被赋值就不可以更改它的值。 (1)修饰成员变量 如果fina…

CleanMyMac最新版4.14Mac清理软件下载安装使用教程

苹果电脑是很多人喜欢使用的一种电脑,它有着优美的外观,流畅的操作系统,丰富的应用程序和高效的性能。但是,随着时间的推移,苹果电脑也会产生一些不必要的文件和数据,这些文件和数据就是我们常说的垃圾。那…

【MySQL】4、MySQL备份与恢复

备份的主要目的是灾难恢复,备份还可以测试应用、回滚数据修改、查询历史数据、审计等 MySQL日志管理 MySQL 的日志默认保存位置为 /usr/local/mysql/data #配置文件 vim /etc/my.cnf 日志的分类 常见日志有: 错误日志,一般查询日志&…

2023年天府杯——C 题:码头停靠问题

问题背景: 某个港口有多个不同类型的码头,可以停靠不同种类的船只。每 艘船只需要一定的时间来完成装卸货物等任务,并且每个码头有容量 限制和停靠时间限制。港口需要在保证收益的情况下,尽可能地提高 运营效率和降低成本。同…