【核磁共振成像】部分傅里叶重建

目录

  • 一、部分傅里叶重建
  • 二、部分傅里叶重建算法
    • 2.1 填零
    • 2.2 零差处理


一、部分傅里叶重建

  在部分傅里叶采集中,数据并不是绕K空间中心对称收集的,而是K空间的一半是完全填充的,另一半只收集了一小部分数据
  部分傅里叶采集所依据的原理是如果物体是实的(real),其傅里叶变换是厄米的,意味着绕K空间中心实部是对称的,虚部是反对称的
  在频率相位方向部分傅里叶采集的主要优点分别降低了回波时间(TE)和扫描时间。在频率编码方向,部分傅里叶采集也减少了沿该轴的梯度矩,从而降低了流动和运动伪影。由K空间最大范围决定的空间分辨率不受影响,与全K空间采集情况等价,只是SNR有所降低,也可能引进一些图像伪影。
  然而,由诸多因素例如运动、共振频率偏移、硬件群时延、涡流、接受线圈B1场不均匀等引起的有害相移,使被建图像失真。因此,在图中显示的未完全填充的半K空间中的额外数据(有时叫”过扫描数据”)被用来克服这些问题。
  部分傅里叶采集也可用于3D扫描的层面选择方向(即第二个相位编码方向),但不普遍。因为层面的相位编码步数一般不是很大,考虑到还需要一些过扫描数据,使得时间的节省并不特别显著
在这里插入图片描述
在这里插入图片描述

Kx和Ky分别代表频率编码和相位编码方向

  (a)是沿频率编码方向覆盖部分K空间(部分Kx或部分回波)
  (b)是沿相位编码方向覆盖部分K空间(部分Ky或部分Nex)


二、部分傅里叶重建算法

2.1 填零

  填零就是 未测量的K空间数据用零来代替,然后用传统重建以得到图像。对于全K空间采集原始数据填零被普遍用来内插图像并降低部分体积效应;对于部分傅里叶采集填零可以用来代替未测量的数据,如果希望图像内插还可以补额外的零。填零之后,可用基于标准傅里叶变换的全K空间重建
  填零通常导致靠近锐利边缘处有一些Gibbs跳动伪影,是 由于K空间数据截断引起的填零的优点是能给出物体低空间频率过扫描范围内比较真实的图像。对此低空间频率范围,相位信息被保留。因此,大结构的相位是精确的,允许填零由于相敏重建。合理的相位精度通常需要采集比较高分数的K空间,例如0.75或更高。
在这里插入图片描述
在这里插入图片描述

Kx和Ky分别代表频率编码和相位编码方向

  (a)是沿频率编码方向覆盖部分K空间(部分Kx或部分回波)
  (b)是沿相位编码方向覆盖部分K空间(部分Ky或部分Nex)


2.2 零差处理

  零差处理从自身数据产生的低空间频率相位map去校正由不完全K空间数据重建产生的相位误差零差处理利用的是K空间数据的厄米共轭对称性。零差不适合需要图像相位的那些应用,如匀场、相位对比度(用相位差重建的)和相敏热成像;然而,如果复数差运算在K空间执行,则复数差相位对比度可以用零差成像
在这里插入图片描述
在这里插入图片描述

零差高通滤波器

  电感阻止高频信号通过而允许低频信号通过,电容的特性却相反。信号能够通过电感的滤波器、或者通过电容连接到地的滤波器对于低频信号的衰减要比高频信号小,称为低通滤波器
  最简单的高通滤波器是“一阶高通滤波器”,它的的特性一般用一阶线性微分方程表示,它的左边与一阶低通滤波器完全相同,仅右边是激励源的导数而不是激励源本身当较低的频率通过该系统时,没有或几乎没有什么输出,而当较高的频率通过该系统时,将会受到较小的衰减。实际上,对于极高的频率而言,电容器相当于“短路”一样,这些频率,基本上都可以在电阻两端获得输出。换言之,这个系统适宜于通过高频率而对低频率有较大的阻碍作用,是一个最简单的“高通滤波器”。

  零差方法的缺点是 方程中用的低频相位map不能准确地描写急速变换的相位。为解决此问题,可用迭代部分傅里叶方法。该方法 用零差重建估计模像,同时从低频相位map估计相位。结合估计的模像和相位像给出一个复数像,对此复数像经傅里叶变换可得到估计的K空间数据。
在这里插入图片描述

平滑混合K空间所有点信号值的估计,迭代零差重建由方程给出的结合函数W(k)的曲线

  如果部分傅里叶采集用在两个正交方向,假定部分采集分数大于0.5,则一个方向可用零差重建处理,而另一个方向只能用填零处理。即如果部分傅里叶采集只用在一个方向,其他方向必须首先用正常(即全K空间)算法处理

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/90989.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【数据结构】C语言队列(详解)

前言: 💥🎈个人主页:​​​​​​Dream_Chaser~ 🎈💥 ✨✨专栏:http://t.csdn.cn/oXkBa ⛳⛳本篇内容:c语言数据结构--C语言实现队列 目录 一.队列概念及结构 1.1队列的概念 1.2队列的结构 二.队列的实现 2.1头文…

frida动态调试入门01——定位关键代码

说明 frida是一款Python工具可以方便对内存进行hook修改代码逻辑在移动端安全和逆向过程中常用到。 实战 嘟嘟牛登录页面hook 使用到的工具 1,jadx-gui 2,frida 定位关键代码 使用jadx-gui 进行模糊搜索,例如搜索encyrpt之类的加密关键…

qt设计界面

widget.h #ifndef WIDGET_H #define WIDGET_H //防止文件重复包含#include <QWidget> //QWidget类所在的头文件&#xff0c;父类头文件 #include<QIcon> #include<QPushButton> …

错误:.terraform.d/plugins/darwin_amd64: no such file or directory

.terraform.d/plugins/darwin_amd64: no such file or directory init 会初始化安装一些东西。 再执行你的 terraformer import google --resourcescompute_instance,compute_disk,compute_network --regionsasia-east1 --projectsyour-project-id 这样就能执行了

微信小程序云开发-云存储文件ID转http

一、前言 云开发的云储存文件默认是以cloudID的形式读取的&#xff0c;但是这种读取方式只能在微信小程序或内嵌H5中使用。 所以如果需要在其他地方使用&#xff0c;例如浏览器或网站等其他端读取文件的时候&#xff0c;需要转换成普通的http链接。 目前官方提供有转换的接口…

chatGPT训练过程

强化学习基础 强化学习是指智能体在不确定环境中最大化其获得的奖励从而达到自主决策的目的。其执行过程为&#xff1a;智能体依据策略决策从而执行动作&#xff0c;然后感知环境获取环境的状态&#xff0c;进而得到奖励(以便下次再到相同状态时能采取更优的动作)&#xff0c;…

金融风控数据分析-信用评分卡建模

本文引用自&#xff1a; 金融风控&#xff1a;信用评分卡建模流程 - 知乎 (zhihu.com) 在原文的基础上加上了一部分自己的理解&#xff0c;转载在CSDN上作为保留记录。 本文涉及到的数据集可直接从天池上面下载&#xff1a; Give Me Some Credit给我一些荣誉_数据集-阿里云…

前端基础(Element、vxe-table组件库的使用)

前言&#xff1a;在前端项目中&#xff0c;实际上&#xff0c;会用到组件库里的很多组件&#xff0c;本博客主要介绍Element、vxe-table这两个组件如何使用。 目录 Element 引入element 使用组件的步骤 使用对话框的示例代码 效果展示 vxe-table 引入vxe-table 成果展…

Leetcode每日一题:1267. 统计参与通信的服务器

原题 这里有一幅服务器分布图&#xff0c;服务器的位置标识在 m * n 的整数矩阵网格 grid 中&#xff0c;1 表示单元格上有服务器&#xff0c;0 表示没有。 如果两台服务器位于同一行或者同一列&#xff0c;我们就认为它们之间可以进行通信。 请你统计并返回能够与至少一台其…

iSCSI存储服务器

目录 一、ISCSI是什么&#xff1f; 二、ISCSI产生背景 三、存储分类 四、ISCSI架构 五、ISCSI存储服务搭建案例 一、ISCSI是什么&#xff1f; ISCSI名为互联网小型计算机系统接口又称为IP-SAN&#xff0c;是一种新的远程存储技术&#xff0c;提供存储服务的目标服务器默认使用的…

hadoop学习:mapreduce入门案例四:partitioner 和 combiner

先简单介绍一下partitioner 和 combiner Partitioner类 用于在Map端对key进行分区 默认使用的是HashPartitioner 获取key的哈希值使用key的哈希值对Reduce任务数求模决定每条记录应该送到哪个Reducer处理自定义Partitioner 继承抽象类Partitioner&#xff0c;重写getPartiti…

PSP - 蛋白质结构预测 OpenFold Multimer 模型训练参数与配置

欢迎关注我的CSDN&#xff1a;https://spike.blog.csdn.net/ 本文地址&#xff1a;https://spike.blog.csdn.net/article/details/132575709 OpenFold Multimer 是用于预测蛋白质多聚体结构的计算方法。基于OpenFold 的单体预测框架&#xff0c;利用深度学习技术&#xff0c;结…