13.108.Spark 优化、Spark优化与hive的区别、SparkSQL启动参数调优、四川任务优化实践:执行效率提升50%以上

13.108.Spark 优化
1.1.25.Spark优化与hive的区别
1.1.26.SparkSQL启动参数调优
1.1.27.四川任务优化实践:执行效率提升50%以上

13.108.Spark 优化:

1.1.25.Spark优化与hive的区别

先理解spark与mapreduce的本质区别,算子之间(map和reduce之间多了依赖关系判断,即宽依赖和窄依赖。)
优化的思路和hive基本一致,比较大的区别就是mapreduce算子之间都需要落磁盘,而spark只有宽依赖才需要落磁盘,窄依赖不落磁盘。
在这里插入图片描述
在这里插入图片描述

1.1.26.SparkSQL启动参数调优

在这里插入图片描述

1)先对比结果:executors优化
Hive执行了30分钟(1800秒)的sql,没有优化过的SparkSQL执行需要,
最少化的Executor执行需要640秒(提高了Executor的并行度,牺牲了HDFS的吞吐量:5个core最合适),
最大化的Executor 281.634秒(最大限度的利用HDFS的吞吐量,牺牲Executor的并行度),
优化取中间值,253.189秒。

方案1:最少化 Fat executors

---------------------------------	Fat executors	--------------------------------------------------------------------------------
./spark-sql --master yarn \	# Fat executors (每个节点一个Executor)【优势:最佳吞吐量】
--num-executors 3 \			# 集群中的节点的数目 = 3
--executor-memory 30G \	# 每个节点的内存/每个节点的executor数目 = 30GB/1 = 30GB
--executor-cores 16 \		# 每个executor独占节点中所有的cores = 节点中的core的数目 = 16
--driver-memory 1G			# AM大约需要1024MB的内存和一个Executor
耗时:Time taken: 640 seconds

方案2:最大化Tiny executors

---------------------------------	Tiny executors	--------------------------------------------------------------------------------
./spark-sql --master yarn \	# Tiny executors [每个Executor一个Core]【优势:并行性】
--num-executors 48 \		# 集群中的core的总数 = 每个节点的core数目 * 集群中的节点数 = 16*3
--executor-memory 1.6G \	# 每个节点的内存/每个节点的executor数目 = 30GB/16 = 1.875GB
--executor-cores 1 \			# 每个executor一个core
--driver-memory 1G			# AM大约需要1024MB的内存和一个Executor
耗时:Time taken: 281.634 seconds
executor并发度只有45,task的并发度,1个executor 50左右,总数 18382

方案3:折中方案

---------------------------------	Balance between Fat (vs) Tiny	--------------------------------------------------------------------------------
./spark-sql --master yarn \	# Balance between Fat (vs) Tiny
--num-executors 8 \			# (16-1)*3/5 = 9 留一个executor给ApplicationManager => --num-executors = 9-1 = 8# 每个节点的executor的数目 = 9 / 3 = 3
--executor-memory 10G \	# 每个executor的内存 = 30GB / 3 = 10GB【默认分配的是8G,需要修改配置文件支持到10G。】# 计算堆开销 = 7% * 10GB = 0.7GB。因此,实际的 --executor-memory = 10 - 0.7 = 9.3GB
--executor-cores 5 \			# 给每个executor分配5个core,保证良好的HDFS吞吐。# 每个节点留一个core给Hadoop/Yarn守护进程 => 每个节点可用的core的数目= 16 - 1
--driver-memory 1G			
耗时:Time taken: 253 seconds

Task并行度优化
1.调整 Executors 下 每个stage的默认task数量,即设置Task 的并发度:

【当集群数量比较大时】
很多人常犯的一个错误就是不去设置这个参数,那么此时就会导致Spark自己根据底层HDFS的block数量来设置task的数量,
!【默认是一个HDFS block对应一个task(如果不设置那么可以通过第三种方案来优化!)】。
通常来说,Spark默认设置的数量是偏少的(比如就几十个task),
如果task数量偏少的话,就会导致你前面设置好的Executor的参数都前功尽弃。
试想一下,无论你的Executor进程有多少个,内存和CPU有多大,但是task只有1个或者10个,
那么90%的Executor进程可能根本就没有task执行,也就是白白浪费了资源!
因此Spark官网建议的设置原则是,设置该参数为num-executors * executor-cores的2~3倍较为合适,
比如Executor的总CPU core数量为300个,那么设置1000个task是可以的,此时可以充分地利用Spark集群的资源。

30 G 16 core

/home/admin/bigdata/spark-2.2.0-bin-hadoop2.6/bin/spark-sql \
--master yarn \
--num-executors 16 \
--executor-memory 1G \
--executor-cores 10 \
--driver-memory 1G \
--conf spark.default.parallelism=450 \
--conf spark.storage.memoryFraction=0.5 \
--conf spark.shuffle.memoryFraction=0.3	

1.1.27.四川任务优化实践:执行效率提升50%以上

一、四川的信息
账号:xxxxxx 密码: xxxxxxxx

一、事实表优化
1、**优化结果: 20 分钟左右,优化完成后 5 分钟左右。**数据量:5.8亿

2、原SQL:(spark不一定快)

drop table if exists dc_f_organization;
create table if not exists dc_f_organization (orgid int,orgcode string,yearmonth string ,zzdate string,orgname string,orglevel int,id int,orgtagging int, createdate timestamp
);insert into dc_f_organization
select a.orgid, .orgcode, a.yearmonth, a.zzdate, n.orgname, n.orglevel, n.id, n.orgtagging, n.createdate
from ( select o.id orgid, o.orgcode, d.yearmonth, d.zzdate from dc_d_organization o, dc_d_wddate ) aleft join dc_d_organization n on to_date(n.createdate)=a.zzdate and n.orgcode = a.orgcode;

3、优化方案:
– ############################## HIVE 执行:增加 block 的数量,提高Spark的并发度(当前任务文件比较小,设置了26;一般参考数量:300左右;) #################################
– (1) 单独执行笛卡尔积,
– 先拆分文件:(改用hive,拆分文件,增加并行度)
– 【耗时:101.586 seconds;结果文件数量 26】
– 检查文件块数量:hadoop fs -ls /user/hive/warehouse/test.db/dc_d_org_date 26 个block

set mapreduce.map.memory.mb=1024;
set mapred.max.split.size=524288;
set mapred.min.split.size.per.node=524288;
set mapred.min.split.size.per.rack=524288;
drop table if exists dc_d_org_date;
create table dc_d_org_date as select o.id orgid,o.orgcode,d.yearmonth,d.zzdate from dc_d_organization o CROSS JOIN dc_d_wddate d;
-- ##############################	SPARK 执行;参数:spark-sql --master yarn --num-executors 100 --executor-memory 5G --executor-cores 3 --driver-memory 3G	#################################
-- (2)【Spark:Time taken: 115.78 seconds;】
set spark.shuffle.consolidateFiles=true;
drop table if exists dc_f_organization;
create table if not exists dc_f_organization
(orgid int,orgcode string,YEARMONTH string ,ZZDATE string,ORGNAME string,orglevel int,id int,ORGTAGGING int, createdate timestamp);insert into dc_f_organization
select a.orgid,a.orgcode,a.YEARMONTH,a.ZZDATE,n.ORGNAME,n.orglevel,n.id,n.ORGTAGGING,n.createdate
from dc_d_org_date a
left join DC_D_ORGANIZATION n on to_date(n.CREATEDATE)=a.ZZDATE and n.orgcode = a.orgcode;

– ############################## 持续优化方向:将上述两者合并到一起在 spark 中执行 ##############################
问题:可能是因为文件太小,spark 分区命令没有生效。set spark.sql.shuffle.partitions=300;
注意:SPARK中笛卡尔积需要改成 CROSS JOIN,否则语法报错。

二、优化CUBE表

  1、优化结果:原来1小时左右,优化后26分钟。总结:shuffle时间:16分钟,数据量	35.2亿任务含有宽依赖(group)被分成2个stage✔采用方案 1:改用spark执行。提高并行度。执行参数:spark-sql --master yarn --num-executors 100 --executor-memory 5G --executor-cores 3 --driver-memory 3Gstage 1 执行时间:11(partitions=300)stage 2 执行时间:15(partitions=200)设置分区数量,默认是200set spark.sql.shuffle.partitions=300;(理论上可以提高 stage 2 30%的速度,实际运行的时候可能会丢失executor,运行不稳定,不建议设置。)(原因可能是设置了虚拟核心数量。)方案 2:将case when的操作独立出一张表,去除部分重复扫描计算,减少cube阶段的计算量。抽取的时间增加了2分钟,节省的 shuffle 时间也是2分钟。没有意义。预处理时间:2-3分钟stage 1 执行时间:11stage 2 执行时间:13(节省的时间也是2-3分钟)方案 3:提高 shuffle 使用内存的占比 设置为60%执行参数:spark-sql --master yarn --num-executors 100 --executor-memory 5G --executor-cores 3 --driver-memory 3G --conf spark.storage.memoryFraction=0.3 --conf spark.shuffle.memoryFraction=0.5执行结果:效果不明显,多次执行时间也不太一致。方案 4:减少CUBE的维度数量, orgid 和 orgcode是一对一关系,可以去掉1个维度,计算完成之后再join执行结果:join 消耗的时间更久。2、采用的方案1:SPARK执行-- 执行参数 spark-sql --master yarn --num-executors 100 --executor-memory 5G --executor-cores 3 --driver-memory 3G-- set spark.sql.shuffle.partitions=300;drop table  if  exists dc_c_organization;create table if not exists dc_c_organization(YEARMONTH string,ZZDATE string,orgid int ,orgcode string,total int,provinceNum int,cityNum int,districtNum int, newDistrictNum int,townNum int,streetNum int,otherNum int,communityNum int,villageNum int,gridNum int);-- 如果用 hive 执行可以开启 combiner,map端先预聚合,减少reduce端的数据量和计算量,减少磁盘的IO和网络传输时间。-- set hive.map.aggr = true;-- set hive.groupby.mapaggr.checkinterval = 10000;-- ##############################	SPARK	#################################-- set spark.sql.shuffle.partitions=300;insert into dc_c_organizationselect  n.YEARMONTH,n.ZZDATE,n.orgid,n.orgcode,count(n.id) total,nvl(SUM(case when pt.displayname='省' then 1  else 0 end),0) AS provinceNum,nvl(SUM(case when pt.displayname='市' then 1  else 0 end),0) as cityNum,nvl(SUM(case when pt.displayname='县(区)' then 1  else 0 end),0) AS districtNum,(nvl(SUM(case when pt.displayname='县(区)'  then 1  else 0 end),0) -nvl(SUM(case when pt.displayname='县(区)' AND n.ORGTAGGING= 31 then 1  else 0 end),0)) as newDistrictNum,nvl(SUM(case when  ((n.ORGNAME LIKE '%乡%' OR n.ORGNAME LIKE '%镇%' OR n.ORGNAME LIKE '%乡镇%')) AND pt.displayname='乡镇(街道)' then 1  else 0 end),0) townNum,nvl(SUM(case when (n.ORGNAME LIKE '%街道%') AND pt.displayname='乡镇(街道)' then 1  else 0 end),0) streetNum,(nvl(SUM(case when pt.displayname='乡镇(街道)'then 1  else 0 end),0)-nvl(SUM(case when ((n.ORGNAME LIKE '%乡%' OR n.ORGNAME LIKE '%镇%' OR n.ORGNAME LIKE '%乡镇%') ) AND pt.displayname='乡镇(街道)' then 1  else 0 end),0)-nvl(SUM(case when (n.ORGNAME LIKE '%街道%' )  AND pt.displayname='乡镇(街道)' then 1  else 0 end),0)) otherNum,(nvl(SUM(case when pt.displayname='村(社区)' then 1  else 0 end),0)-nvl(SUM(case when ((n.ORGNAME LIKE '%村' OR n.ORGNAME LIKE '%村民委员会' OR n.ORGNAME LIKE '%农村工作中心站' OR n.ORGNAME LIKE '%村委会')) AND pt.displayname='村(社区)' then 1  else 0 end),0)) communityNum,nvl(SUM(case when ((n.ORGNAME LIKE '%村' OR n.ORGNAME LIKE '%村民委员会' OR n.ORGNAME LIKE '%农村工作中心站' OR n.ORGNAME LIKE '%村委会')) AND pt.displayname='村(社区)' then 1  else 0 end),0) villageNum,nvl(SUM(case when pt.displayname='片组片格'then 1  else 0 end),0) gridNumfrom dc_f_organization nleft join dc_d_property pt on n.orglevel = pt.idGROUP BY n.YEARMONTH,n.ZZDATE,n.orgid,n.orgcodeWITH CUBE;3、优化方案2:从业务逻辑上进行优化。(发现SQL逻辑中存在重复的计算)-- ############################	预处理:去除重复计算和减少CUBE的计算量	############################drop table if exists temp_dc_c_organization;create table temp_dc_c_organizationas selectn.yearmonth,n.zzdate,n.orgid,n.orgcode,n.id as id,case when pt.displayname='省' then 1  else 0 end as provincenum,case when pt.displayname='市' then 1  else 0 end as citynum,case when pt.displayname='县(区)' then 1  else 0 end as districtnum,case when pt.displayname='县(区)' and n.orgtagging= 31 then 1  else 0 end as old_districtnum,
【重复1case when ((n.orgname like '%乡%' or n.orgname like '%镇%' or n.orgname like '%乡镇%')) and pt.displayname='乡镇(街道)' then 1  else 0 end townnum,
【重复2case when (n.orgname like '%街道%') and pt.displayname='乡镇(街道)' then 1  else 0 end streetnum,case when pt.displayname='乡镇(街道)'then 1  else 0 end as total_streetnum_01,
【重复1case when ((n.orgname like '%乡%' or n.orgname like '%镇%' or n.orgname like '%乡镇%')) and pt.displayname='乡镇(街道)' then 1  else 0 end as total_streetnum_02,
【重复2case when (n.orgname like '%街道%') and pt.displayname='乡镇(街道)' then 1  else 0 end as total_streetnum_03,case when pt.displayname='村(社区)' then 1  else 0 end as communitynum_01,
【重复3case when ((n.orgname like '%村' or n.orgname like '%村民委员会' or n.orgname like '%农村工作中心站' or n.orgname like '%村委会')) and pt.displayname='村(社区)' then 1  else 0 end as communitynum_02,
【重复3case when ((n.orgname like '%村' or n.orgname like '%村民委员会' or n.orgname like '%农村工作中心站' or n.orgname like '%村委会')) and pt.displayname='村(社区)' then 1  else 0 end villagenum,case when pt.displayname='片组片格'then 1  else 0 end gridnumfromdc_f_organization nleft join dc_d_property pt on n.orglevel = pt.id;-- ############################	CUBE:节省的时间相当于预处理的时间。############################create table dc_c_organization_02as select  yearmonth,zzdate,orgid,count(id) total,sum(provincenum) as provincenum,sum(citynum) as citynum,sum(districtnum) as districtnum,sum(districtnum)-sum(old_districtnum) as newdistrictnum,sum(townnum) townnum,sum(streetnum) streetnum,sum(total_streetnum_01)-sum(townnum)-sum(streetnum) othernum,sum(communitynum_01)-sum(villagenum) communitynum,sum(villagenum) villagenum,sum(gridnum) gridnumfrom temp_dc_c_organization as ngroup by yearmonth, zzdate, orgid with cube;

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/91492.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

报文信息转换器

HttpMessageConverter HttpMessageConverter:报文信息转换器,将请求报文转换为Java对象,或将Java对象转换为响应报文。它提供了两个注解和两个类型: RequestBody, ResponseBody, RequestEntity, ResponseEntity(响应用的较多) 准备 创建模块并…

【无标题】8.31在华清

可以登录但是不能跳转

区块链金融项目怎么做?

区块链技术的兴起引发了金融领域的变革,为金融行业带来了前所未有的机遇与挑战。在这个快速发展的领域中,如何在区块链金融领域做出卓越的表现?本文将从专业性和思考深度两个方面,探讨区块链金融的发展路径,并为读者提…

5分钟看懂物料清单(BOM)的用途、类型及管理

管理物料可以提高制造和供应链流程的效率,例如生产、物流、调度、产品成本核算和库存计划。企业通常使用物料清单作为制造产品的组件、材料和流程的中央记录。 物料清单(BOM)是构建、制造或维修产品或服务所需的原材料、组件和说明的详细列表…

centos安装MySQL 解压版完整教程(按步骤傻瓜式安装

一、卸载系统自带的 Mariadb 查看: rpm -qa|grep mariadb 卸载: rpm -e --nodeps mariadb-libs-5.5.68-1.el7.x86_64 二、卸载 etc 目录下的 my.cnf 文件 rm -rf /etc/my.cnf 三、检查MySQL是否存在 有则先删除 #卸载mysql服务以及删除所有mysql目录 #没…

如何在不重新安装的情况下将操作系统迁移到新硬盘?

通常情况下,当你的硬盘损坏或文件过多时,电脑会变得缓慢且卡顿。这时,你可能会被建议更换为一块更好的新硬盘。 ​ 在比较HDD和SSD之后,许多用户更愿意选择SSD作为他们的新硬盘,因为SSD比HDD更稳定且运行更安…

ELK安装、部署、调试(五)filebeat的安装与配置

1.介绍 logstash 也可以收集日志,但是数据量大时太消耗系统新能。而filebeat是轻量级的,占用系统资源极少。 Filebeat 由两个主要组件组成:harvester 和 prospector。 采集器 harvester 的主要职责是读取单个文件的内容。读取每个文件&…

基于SpringBoot+Vue的旅游系统

摘 要 随着旅游业的发展,越来越多的人选择旅游作为自己的出行方式。在旅游规划过程中,旅游景点选择是至关重要的环节。本文提出了一种基于协同过滤推荐算法的旅游平台系统。该系统采用前后端分离的设计,主要使用了SpringBoot、Vue等技术&…

YOLO目标检测——人脸性别识别数据集下载分享

人脸性别识别数据集共同2300图片。在社交媒体分析、广告定向投放、零售业、安防系统以及健康和医疗领域等多个领域都具有广泛的应用潜力。通过准确识别人脸的性别,可以为这些领域提供更精准的数据分析和个性化的服务。 数据集点击下载:YOLO人脸性别识别数…

QT下使用ffmpeg+SDL实现音视频播放器,支持录像截图功能,提供源码分享与下载

前言: SDL是音视频播放和渲染的一个开源库,主要利用它进行视频渲染和音频播放。 SDL库下载路径:https://github.com/libsdl-org/SDL/releases/tag/release-2.26.3,我使用的是2.26.3版本,大家可以自行选择该版本或其他版…

机器人编程怎么入门?

机器人已经在我们中间存在了二三十年。如今,机器人在我们的文化中比以往任何时候都更加根深蒂固。大多数机器人机器用于各种装配线,或在世界各地的矿山或工业设施中执行密集的物理操作。 还有一些家用机器人,工程师正在对机器人进行编程&…

【【萌新的STM32学习25--- USART寄存器的介绍】】

萌新的STM32学习25- USART寄存器的介绍 STM32–USART寄存器介绍(F1) 控制寄存器1 (CR1) 位13: 使能USART UE 0: USART分频器和输出被禁止 1: USART模块使能 位12 : 配置8个数据位…