JVM 垃圾收集器

重点:CMS,G1,ZGC

主要垃圾收集器如下,图中标出了它们的工作区域、垃圾收集算法,以及配合关系。

HotSpot虚拟机垃圾收集器

  • Serial 收集器

Serial 收集器是最基础、历史最悠久的收集器。

如同它的名字(串行),它是一个单线程工作的收集器,使用一个处理器或一条收集线程去完成垃圾收集工作。并且进行垃圾收集时,必须暂停其他所有工作线程,直到垃圾收集结束——这就是所谓的“Stop The World”。

Serial/Serial Old 收集器的运行过程如图:

Serial/Serial Old收集器运行示意图

  • ParNew

ParNew 收集器实质上是 Serial 收集器的多线程并行版本,使用多条线程进行垃圾收集。

ParNew/Serial Old 收集器运行示意图如下:

ParNew/Serial Old收集器运行示意图

除了Serial收集器外,目前只有它能与CMS收集器配合工作。

CMS作为老年代的收集器,却无法与JDK 1.4.0中已经存在的新生代收集器Parallel Scavenge配合工作[1],所以在JDK 5中使用CMS来收集老年代的时候,新生代只能选择ParNew或者Serial收集器中的一个。ParNew收集器是激活CMS后(使用-XX:+UseConcMarkSweepGC选项)的默认新生代收集器,

  • Parallel Scavenge

Parallel Scavenge 收集器是一款新生代收集器,基于标记-复制算法实现,也能够并行收集。和 ParNew 有些类似,但 Parallel Scavenge 主要关注的是垃圾收集的吞吐量——所谓吞吐量,就是 CPU 用于运行用户代码的时间和总消耗时间的比值,比值越大,说明垃圾收集的占比越小。

吞吐量吞吐量

  • Serial Old

Serial Old 是 Serial 收集器的老年代版本,它同样是一个单线程收集器,使用标记-整理算法。

  • Parallel Old

Parallel Old 是 Parallel Scavenge 收集器的老年代版本,支持多线程并发收集,基于标记-整理算法实现。

Parallel Scavenge/Parallel Old收集器运行示意图

  • CMS 收集器

CMS(Concurrent Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器,同样是老年代的收集器,采用标记-清除算法。

CMS 收集齐的垃圾收集分为四步:

  • 初始标记(CMS initial mark):单线程运行,需要 Stop The World,标记 GC Roots 能直达的对象。
  • 并发标记((CMS concurrent mark):无停顿,和用户线程同时运行,从 GC Roots 直达对象开始遍历整个对象图。
  • 重新标记(CMS remark):多线程运行,需要 Stop The World,标记并发标记阶段产生对象。
  • 并发清除(CMS concurrent sweep):无停顿,和用户线程同时运行,清理掉标记阶段标记的死亡的对象。

Concurrent Mark Sweep 收集器运行示意图如下:

Concurrent Mark Sweep收集器运行示意图

三个明显的缺点:

  • CMS收集器对处理器资源非常敏感。在并发阶段,它虽然不会导致用户线程停顿,但会因为占用了一部分线程而导致应用程序变慢,降低吞吐量,尤其是处理器核心数量少的时候。
  • 由于CMS收集器无法处理“浮动垃圾”(Floating Garbage),有可能出现“Con-current Mode Failure”失败进而导致另一次完全“Stop The World”的Full GC的产生。CMS收集器在老年代使用了92%的空间后会被激活,但是要是CMS运行期间预留的内存无法满足程序分配新对象的需要,就会出现一次“并发失败”,这个时候虚拟机只好冻结用户线程的执行,临时启用Serial Old收集器来重新进行老年代的垃圾收集。
  • CMS是一款基于“标记-清除”算法实现的收集器,这意味着收集结束时会有大量空间碎片产生。
    • 若分配对象时找不到连续的空间,就会触发一次Full GC,为了解决这个问题,CMS提供了一个个-XX:+UseCMS-CompactAtFullCollection开关参数(默认是开启的,此参数从JDK 9开始废弃),用于在CMS收集器不得不进行Full GC时开启内存碎片的合并整理过程,由于这个内存整理必须移动存活对象,(在Shenandoah和ZGC出现前)是无法并发的。这样空间碎片问题是解决了,但停顿时间又会变长,因此虚拟机设计者们还提供了另外一个参数-XX:CMSFullGCsBeforeCompaction(此参数从JDK 9开始废弃),这个参数的作用是要求CMS收集器在执行过若干次(数量由参数值决定)不整理空间的Full GC之后,下一次进入Full GC前会先进行碎片整理(默认值为0,表示每次进入Full GC时都进行碎片整理)。
  • Garbage First 收集器

Garbage First(简称 G1)收集器是垃圾收集器的一个颠覆性的产物,它开创了局部收集的设计思路和基于 Region 的内存布局形式。

虽然 G1 也仍是遵循分代收集理论设计的,但其堆内存的布局与其他收集器有非常明显的差异。以前的收集器分代是划分新生代、老年代、持久代等。

G1 把连续的 Java 堆划分为多个大小相等的独立区域(Region),每一个 Region 都可以根据需要,扮演新生代的 Eden 空间、Survivor 空间,或者老年代空间。收集器能够对扮演不同角色的 Region 采用不同的策略去处理。

G1 Heap Regions

这样就避免了收集整个堆,而是按照若干个 Region 集进行收集,同时维护一个优先级列表,跟踪各个 Region 回收的“价值,优先收集价值高的 Region。

G1 收集器的运行过程大致可划分为以下四个步骤:

  • 初始标记(initial mark),标记了从 GC Root 开始直接关联可达的对象。STW(Stop the World)执行。
  • 并发标记(concurrent marking),和用户线程并发执行,从 GC Root 开始对堆中对象进行可达性分析,递归扫描整个堆里的对象图,找出要回收的对象、
  • 最终标记(Remark),STW,标记再并发标记过程中产生的垃圾。
  • 筛选回收(Live Data Counting And Evacuation),制定回收计划,选择多个 Region 构成回收集,把回收集中 Region 的存活对象复制到空的 Region 中,再清理掉整个旧 Region 的全部空间。需要 STW。

G1收集器运行示意图

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/94441.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【STM32】学习笔记(TIM定时器)

TIM(Timer)定时器 定时器可以对输入的时钟进行计数,并在计数值达到设定值时触发中断 16位计数器、预分频器、自动重装寄存器的时基单元,在72MHz计数时钟下可以实现最大59.65s的定时 不仅具备基本的定时中断功能,而且…

一个面向MCU的小型前后台系统

JxOS简介 JxOS面向MCU的小型前后台系统,提供消息、事件等服务,以及软件定时器,低功耗管理,按键,led等常用功能模块。 gitee仓库地址为(复制到浏览器打开): https://gitee.com/jer…

备份迁移数据库

记录下备份迁移数据库的经历。 使用工具sqldump和mysql 1、sqldump导出数据 #导出整个数据库 sudo mysqldump -uroot -p123456 database > database.sql#导出数据库中某个表 sudo mysqldump -uroot -p123456 database table1 > database.sql#导出数据库中多个表 sudo …

Redis 缓存穿透、击穿、雪崩

一、缓存穿透 1、含义 缓存穿透是指查询一个缓存中和数据库中都不存在的数据,导致每次查询这条数据都会透过缓存,直接查库,最后返回空。 2、解决方案 1)缓存空对象 就是当数据库中查不到数据的时候,我缓存一个空对象…

ARM Cortex-M 的 SP

文章目录 1、栈2、栈操作3、Cortex-M中的栈4、MDK中的SP操作流程5、Micro-Lib的SP差别1. 使用 Micro-Lib2. 未使用 Micro-Lib 在嵌入式开发中,堆栈是一个很基础,同时也是非常重要的名词,堆栈可分为堆 (Heap) 和栈 (Stack) 。 栈(Stack): 一种…

Android安卓实战项目(13)---记账APP详细记录每天的收入和支出并且分类统计【生活助手类APP】强烈推荐自己也在用!!!(源码在文末)

Android安卓实战项目(13)—记账APP详细记录每天的收入和支出并且分类统计【生活助手类APP】强烈推荐自己也在用!!!(源码在文末🐕🐕🐕) 一.项目运行介绍 B站…

LeetCode-455-分发饼干-贪心算法

题目描述: 假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。 对每个孩子 i,都有一个胃口值 g[i],这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干 j&#xff…

2023年王炸面试题每日一练--为什么会有精度的损失

基本数据类型中为什么会出现精度损失,怎么样会避免出现精度损失 loat 32位 出现精度损失的原因: 输入的值为十进制,而在计算的过程中,是要把十进制的小数位值在有限位的情况下转变为二进制的小数,就会出现精度的损失…

【ES系列】(一)简介与安装

首发博客地址 首发博客地址[1] 系列文章地址[2] 教学视频[3] 为什么要学习 ES? 强大的全文搜索和检索功能:Elasticsearch 是一个开源的分布式搜索和分析引擎,使用倒排索引和分布式计算等技术,提供了强大的全文搜索和检索功能。学习 ES 可以掌…

Node 执行命令时传参 process.argv

process 对象是一个全局变量,提供当前 Node.js 进程的有关信息,以及控制当前 Node.js 进程。 因为是全局变量,所以无需使用 require()。 process.argv 属性返回一个数组,这个数组包含了启动Node.js进程时的命令行参数&#xff0c…

你知道用Woof创建的Linux吗?

Quirky 8.2 已发布,它是 Puppy Linux 的姊妹项目,是用一份叫 Woof 的定制工具创建的 Linux 发行。 新版本 Quirky 8.2 运行在 64 位的 x86 计算机上,主要提供了针对以前的 8.x 版本的增量改进。 Quirky Linux 8.2 x86_64 的代号是Xerus&…

【链表OJ 10】环形链表Ⅱ(求入环节点)

前言: 💥🎈个人主页:​​​​​​Dream_Chaser~ 🎈💥 ✨✨刷题专栏:http://t.csdn.cn/UlvTc ⛳⛳本篇内容:力扣上链表OJ题目 目录 leetcode142. 环形链表 II 1.问题描述 2.代码思路 3.问题分析 leetcode142. 环形链…