代码随想录算法训练营第五十三天 | 1143.最长公共子序列,1035.不相交的线,53. 最大子序和 动态规划
- 1143.最长公共子序列
- 1035.不相交的线
- 53. 最大子序和 动态规划
1143.最长公共子序列
题目链接
视频讲解
给定两个字符串 text1 和 text2,返回这两个字符串的最长 公共子序列 的长度,如果不存在 公共子序列 ,返回 0
一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串
例如,“ace” 是 “abcde” 的子序列,但 “aec” 不是 “abcde” 的子序列
两个字符串的 公共子序列 是这两个字符串所共同拥有的子序列
输入:text1 = "abcde", text2 = "ace"
输出:3
确定dp数组(dp table)以及下标的含义
dp[i][j]:长度为[0, i - 1]的字符串text1与长度为[0, j - 1]的字符串text2的最长公共子序列为dp[i][j]
确定递推公式
主要就是两大情况: text1[i - 1] 与 text2[j - 1]相同,text1[i - 1] 与 text2[j - 1]不相同
如果text1[i - 1] 与 text2[j - 1]相同,那么找到了一个公共元素,所以dp[i][j] = dp[i - 1][j - 1] + 1;
如果text1[i - 1] 与 text2[j - 1]不相同,那就看看text1[0, i - 2]与text2[0, j - 1]的最长公共子序列 和 text1[0, i - 1]与text2[0, j - 2]的最长公共子序列,取最大的
即:dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
if (text1[i - 1] == text2[j - 1]) {dp[i][j] = dp[i - 1][j - 1] + 1;
} else {dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
}
dp数组如何初始化
先看看dp[i][0]应该是多少呢?
test1[0, i-1]和空串的最长公共子序列自然是0,所以dp[i][0] = 0;
同理dp[0][j]也是0
其他下标都是随着递推公式逐步覆盖,初始为多少都可以,那么就统一初始为0
代码:
vector<vector<int>> dp(text1.size() + 1, vector<int>(text2.size() + 1, 0));
确定遍历顺序
从递推公式,可以看出,有三个方向可以推出dp[i][j],如图:
那么为了在递推的过程中,这三个方向都是经过计算的数值,所以要从前向后,从上到下来遍历这个矩阵
举例推导dp数组
以输入:text1 = “abcde”, text2 = “ace” 为例,dp状态如图:
最后红框dp[text1.size()][text2.size()]为最终结果
class Solution {
public:int longestCommonSubsequence(string text1, string text2) {vector<vector<int>> dp(text1.size() + 1, vector<int>(text2.size() + 1, 0));for (int i = 1; i <= text1.size(); i++) {for (int j = 1; j <= text2.size(); j++) {if (text1[i - 1] == text2[j - 1]) {dp[i][j] = dp[i - 1][j - 1] + 1;} else {dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);}}}return dp[text1.size()][text2.size()];}
};
1035.不相交的线
题目链接
视频讲解
在两条独立的水平线上按给定的顺序写下 nums1 和 nums2 中的整数
现在,可以绘制一些连接两个数字 nums1[i] 和 nums2[j] 的直线,这些直线需要同时满足满足:
nums1[i] == nums2[j]
且绘制的直线不与任何其他连线(非水平线)相交
请注意,连线即使在端点也不能相交:每个数字只能属于一条连线
以这种方法绘制线条,并返回可以绘制的最大连线数
输入:nums1 = [1,4,2], nums2 = [1,2,4]
输出:2
本题说是求绘制的最大连线数,其实就是求两个字符串的最长公共子序列的长度!
class Solution {
public:int maxUncrossedLines(vector<int>& A, vector<int>& B) {vector<vector<int>> dp(A.size() + 1, vector<int>(B.size() + 1, 0));for (int i = 1; i <= A.size(); i++) {for (int j = 1; j <= B.size(); j++) {if (A[i - 1] == B[j - 1]) {dp[i][j] = dp[i - 1][j - 1] + 1;} else {dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);}}}return dp[A.size()][B.size()];}
};
53. 最大子序和 动态规划
题目链接
视频讲解
给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和
子数组 是数组中的一个连续部分
输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
动规五部曲如下:
确定dp数组(dp table)以及下标的含义
dp[i]:包括下标i(以nums[i]为结尾)的最大连续子序列和为dp[i]
确定递推公式
dp[i]只有两个方向可以推出来:
dp[i - 1] + nums[i],即:nums[i]加入当前连续子序列和
nums[i],即:从头开始计算当前连续子序列和
一定是取最大的,所以dp[i] = max(dp[i - 1] + nums[i], nums[i]);
dp数组如何初始化
从递推公式可以看出来dp[i]是依赖于dp[i - 1]的状态,dp[0]就是递推公式的基础
dp[0]应该是多少呢?
根据dp[i]的定义,很明显dp[0]应为nums[0]即dp[0] = nums[0]
确定遍历顺序
递推公式中dp[i]依赖于dp[i - 1]的状态,需要从前向后遍历
举例推导dp数组
以示例一为例,输入:nums = [-2,1,-3,4,-1,2,1,-5,4],对应的dp状态如下:
注意最后的结果可不是dp[nums.size() - 1]! ,而是dp[6]
在回顾一下dp[i]的定义:包括下标i之前的最大连续子序列和为dp[i]
那么我们要找最大的连续子序列,就应该找每一个i为终点的连续最大子序列
所以在递推公式的时候,可以直接选出最大的dp[i]
class Solution {
public:int maxSubArray(vector<int>& nums) {if (nums.size() == 0) return 0;vector<int> dp(nums.size());dp[0] = nums[0];int result = dp[0];for (int i = 1; i < nums.size(); i++) {dp[i] = max(dp[i - 1] + nums[i], nums[i]); // 状态转移公式if (dp[i] > result) result = dp[i]; // result 保存dp[i]的最大值}return result;}
};