使用多线程std::thread发挥多核计算优势(解答)

使用多线程std::thread发挥多核计算优势(题目)

单核无能为力

如果我们的电脑只有一个核,那么我们没有什么更好的办法可以让我们的程序更快。

因为这个作业限制了你修改算法函数。你唯一能做的就是利用你电脑的多核。

使用多线程

由于我们的电脑有多个内核,所以,我们可以创建多线程来把任务“平均”分配给多个核来计算。

这样多个核在“同时”运算的时候就可以加速程序的执行。

多核的细节

关于我们创建多少个线程比较合适,多个线程真的可以各自分配到多个核而“同时”运行吗?

试一下就知道了。

双线程的效果

我们先用两个线程,把任务固定的分配给这两个线程,看看完成任务总的执行时间是不是变短了。

代码如下:

#include <iostream>
#include <cmath>//sqrt
#include <iostream>
#include <iomanip>//format output
#include <chrono>
#include <thread>//for faster code
#include <mutex>//for faster code
#include <sstream>//stringstream
using namespace std::chrono;//time_piont duration
using namespace std;//test helper function begin 测试辅助代码开始
void check_do(bool b, int line = __LINE__)
{if (b) { cout << "line:" << line << " Pass" << endl; }else { cout << "line:" << line << " Ohh! not passed!!!!!!!!!!!!!!!!!!!!!!!!!!!" << " " << endl; exit(0); }
}
#define check(msg)  check_do(msg, __LINE__);
//test helper function end 测试辅助代码结束//do not change this function! 不要修改这个函数
//if you want to check a number is prime number or not, you can use this function only.
//判断素数只能用这个函数
bool is_number_prime(int n)
{if (n == 2 || n == 3)//prime less than 5{return true;//is prime}if (n % 6 != 5 && n % 6 != 1)//is not prime{return false;}int cmb = (int)std::sqrt(n);for (int i = 5; i <= cmb; i += 6){if (n % i == 0 || n % (i + 2) == 0){return false;//is not prime}}return true;//is prime
}/*100以内的素数 primes within 1002 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97
*/
//测试判断素数的函数是否正确
void test_is_prime_number(void)
{stringstream ss;for (int  i = 2; i < 100; i++){if (is_number_prime(i)){ss << i << " ";}}check(ss.str() == "2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 ");
}//do not change this function!
//不要修改此函数
long long test_the_sum_of_all_primes_within(long long scale)
{auto start = system_clock::now();long long sum = 0;for (int n = 2; n <= scale; n++) {if (is_number_prime(n)) {sum += n;}}cout << "the sum of all primes from 2~"<< setw(10) << scale << " is : " << setw(15) << sum<< ", elapled " << setw(10) << static_cast<long long>(duration<double, milli>(system_clock::now() - start).count()) << " milliseconds"<< endl;return sum;
}
//please change this function to let your program faster by use multi core in your CPU.
//请重新实现此函数以让你的CPU多核优势得到发挥
//hint: maybe you can use multi thread technology to let your code faster.
//提示:你可以使用多线程来发挥多核的计算优势从而让你的程序跑的更快
long long faster_test_the_sum_of_all_primes_within(long long scale)
{auto start = system_clock::now();long long sum = 0;std::mutex sum_mutex;auto fun = [&sum, &sum_mutex](long long scaleStart, long long scaleLast) {for (int n = scaleStart; n <= scaleLast; n++) {if (is_number_prime(n)) {std::lock_guard<std::mutex> lock(sum_mutex);//如果没有多线程互斥访问sum,那么sum的值就可能是错的。sum += n;}}};//区间平分,这样后面的第二个线程的计算量还是偏大,因为都是在处理更大的数字std::thread t1(fun, 2, scale / 2);std::thread t2(fun, scale / 2 + 1, scale);t1.join();//线程开始运行直到结束t2.join();//线程开始运行直到结束cout << "the sum of all primes from 2~" << setw(10) << scale << " is : " << setw(15) << sum<< ", elapled " << setw(10) << static_cast<long long>(duration<double, milli>(system_clock::now() - start).count()) << " milliseconds"<< endl;return sum;
}
//do not change the code in this function 
//不要修改此函数中的内容
int main()
{test_is_prime_number();long long sum = 0;cout << "base slow version:" << endl;sum = test_the_sum_of_all_primes_within(10000 * 10);check(sum == 454396537);sum = test_the_sum_of_all_primes_within(10000 * 100);check(sum == 37550402023);sum = test_the_sum_of_all_primes_within(10000 * 1000);check(sum == 3203324994356);sum = test_the_sum_of_all_primes_within(10000 * 10000);check(sum == 279209790387276);cout << endl << "my faster version:" << endl;sum = faster_test_the_sum_of_all_primes_within(10000 * 10);check(sum == 454396537);sum = faster_test_the_sum_of_all_primes_within(10000 * 100);check(sum == 37550402023);sum = faster_test_the_sum_of_all_primes_within(10000 * 1000);check(sum == 3203324994356);sum = faster_test_the_sum_of_all_primes_within(10000 * 10000);check(sum == 279209790387276);cout << "please enter enter for exit." << endl;cin.get();return 0;
}

运行结果:

代码分析

如同代码注释中所说,我们把求解区间一分为二,后面的一个线程整体上任务还是偏重。因为处理的都是大数据。

但即便这样简单的划分,两个线程比一个线程耗时还是大幅度降低的。

在一百万个整数求解的时候时间降低了50%;

在一千万个整数求解的时候时间降低了50%;

在一亿个整数求解的时候时间降低了30%;这是因为后面一个线程的计算量过大,两个线程的任务没有起到平分导致的。

可以预见,随着数据量的继续增大,这种平分区间的算法,会导致第二个线程完全占据计算量的大头。这时候会导致这种算法的优势降低,甚至减少的时间可以忽略不计。

但是我们的目的达到了。那就是我们已经验证了多线程多核在计算速度上的确是可以完胜单线程的,只要我们合理分配计算任务给多个线程。

继续增加线程数量

下面我们把区间3等分,创建3个线程,看看是不是耗时会不会继续降低:

long long faster_test_the_sum_of_all_primes_within(long long scale)
{auto start = system_clock::now();long long sum = 0;std::mutex sum_mutex;auto fun = [&sum, &sum_mutex](long long scaleStart, long long scaleLast) {for (int n = scaleStart; n <= scaleLast; n++) {if (is_number_prime(n)) {std::lock_guard<std::mutex> lock(sum_mutex);//如果没有多线程互斥访问sum,那么sum的值就可能是错的。sum += n;}}};//区间平分,这样后面的第二个线程的计算量还是偏大,因为都是在处理更大的数字std::thread t1(fun, 2, scale / 3);std::thread t2(fun, scale / 3 + 1, scale / 3 * 2);std::thread t3(fun, scale / 3 * 2 + 1, scale);t1.join();//线程开始运行直到结束t2.join();//线程开始运行直到结束t3.join();//线程开始运行直到结束cout << "the sum of all primes from 2~" << setw(10) << scale << " is : " << setw(15) << sum<< ", elapled " << setw(10) << static_cast<long long>(duration<double, milli>(system_clock::now() - start).count()) << " milliseconds"<< endl;return sum;
}

运行输出:

代码分析2

正如我们预期,时间继续下降,尤其是数据量达到一亿的时候,总耗时再次变为了原来的一半。

至此,多线程多核可以降低计算总时长已经被我们验证完毕。

怎么样?你学到了吗?

欢迎点赞收藏转发。让其他感兴趣的人也可以看到。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/95055.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

国标视频云服务EasyGBS国标视频平台迁移服务器后无法启动的问题解决方法

国标视频云服务EasyGBS支持设备/平台通过国标GB28181协议注册接入&#xff0c;并能实现视频的实时监控直播、录像、检索与回看、语音对讲、云存储、告警、平台级联等功能。平台部署简单、可拓展性强&#xff0c;支持将接入的视频流进行全终端、全平台分发&#xff0c;分发的视频…

【力扣每日一题】2023.9.2 最多可以摧毁的敌人城堡数量

目录 题目&#xff1a; 示例&#xff1a; 分析&#xff1a; 代码&#xff1a; 题目&#xff1a; 示例&#xff1a; 分析&#xff1a; 这道题难在阅读理解&#xff0c;题目看得我匪夷所思&#xff0c;错了好多个测试用例才明白题目说的是什么。 我简单翻译一下就是寻找1和…

【ES6】JavaScript的Proxy:理解并实现高级代理功能

在JavaScript中&#xff0c;Proxy是一种能够拦截对对象的读取、设置等操作的机制。它们提供了一种方式&#xff0c;可以在执行基本操作之前或之后&#xff0c;对这些操作进行自定义处理。这种功能在许多高级编程场景中非常有用&#xff0c;比如实现数据验证、日志记录、权限控制…

【算法系列篇】模拟算法

文章目录 前言1.替换所有问号1.1 题目要求1.2 做题思路1.3 Java代码实现 2. 提莫攻击2.1 题目要求2.2 做题思路2.3 Java代码实现 3. N 字形变换3.1 题目要求3.2 做题思路3.3 Java代码实现 4. 外观数列4.1 题目要求4.2 做题思路4.3 Java代码实现 5. 数青蛙5.1 题目要求5.2 做题思…

【Interaction交互模块】AngularJointDrive角度关节驱动

文章目录 一、预设体位置二、案例&#xff1a;做一个“能开合的门” 1、在已建好的门框下&#xff0c;建门 2、设置参数 3、解决产生的问题 三、其它属性 一、预设体位置 交互模块——可控制物体——物理关节——角度关节驱动 二、案例&#xff1a;做一个“能…

HTML+JavaScript+CSS DIY 分隔条splitter

一、需求分析 现在电脑的屏幕越来越大&#xff0c;为了利用好宽屏&#xff0c;我们在设计系统UI时喜欢在左侧放个菜单或选项面板&#xff0c;在右边显示与菜单或选项对应的内容&#xff0c;两者之间用分隔条splitter来间隔&#xff0c;并可以通过拖动分隔条splitter来动态调研…

Scala的特质trait与java的interface接口的区别,以及Scala特质的自身类型和依赖注入

1. Scala的特质trait与java接口的区别 Scala中的特质&#xff08;trait&#xff09;和Java中的接口&#xff08;interface&#xff09;在概念和使用上有一些区别&#xff1a; 默认实现&#xff1a;在Java中&#xff0c;接口只能定义方法的签名&#xff0c;而没有默认实现。而在…

剑指offer(C++)-JZ29:顺时针打印矩阵(算法-模拟)

作者&#xff1a;翟天保Steven 版权声明&#xff1a;著作权归作者所有&#xff0c;商业转载请联系作者获得授权&#xff0c;非商业转载请注明出处 题目描述&#xff1a; 输入一个矩阵&#xff0c;按照从外向里以顺时针的顺序依次打印出每一个数字&#xff0c;例如&#xff0c;…

VR司法法治教育平台,沉浸式课堂教学培养刑侦思维和能力

VR司法法治教育平台提供了多种沉浸式体验&#xff0c;通过虚拟现实(Virtual Reality&#xff0c;简称VR)技术让用户深度参与和体验法治知识。以下是一些常见的沉浸式体验&#xff1a; 1.罪案重现 VR司法法治教育平台可以通过重现真实案例的方式&#xff0c;让用户亲眼目睹罪案发…

Tuxera NTFS for Mac2023苹果电脑Mac硬盘读写工具

Tuxera NTFS for Mac是一款高效稳定的NTFS读写工具&#xff0c;可以让你在Mac上完整地读写兼容NTFS格式驱动器&#xff0c;对磁盘进行访问、编辑、存储和传输文件等操作。Tuxera NTFS for Mac软件是一款高效稳定的NTFS读写工具&#xff0c;可以让你在Mac上完整地读写兼容NTFS格…

2021年06月 C/C++(五级)真题解析#中国电子学会#全国青少年软件编程等级考试

C/C++编程(1~8级)全部真题・点这里 第1题:数字变换 给定一个包含5个数字(0-9)的字符串,例如 “02943”,请将“12345”变换到它。 你可以采取3种操作进行变换 (1)交换相邻的两个数字 (2)将一个数字加1。如果加1后大于9,则变为0 (3)将一个数字加倍。如果加倍后大于…

高数刷题笔记

任取一米奚落>0,存在德尔塔...&#xff0c;0<|x-x0|<德尔塔 不同点是这个不是|x-x0|趋近与哪一个小范围&#xff0c;而是x趋近与大范围 极限的本质就是逼近&#xff0c;二者都是在确定要逼近到什么程度&#xff01;&#xff01;&#xff01; 放缩 我们要凑出|x-x0|的…