【100天精通Python】Day52:Python 数据分析_Numpy入门基础与数组操作

目录

1  NumPy 基础概述

1.1 NumPy的主要特点和功能

1.2 NumPy 安装和导入

2 Numpy 数组

2.1 创建NumPy数组

2.2 数组的形状和维度

2.3 数组的数据类型

2.4 访问和修改数组元素

3 数组操作

3.1 数组运算

3.2 数学函数

3.3 统计函数

4 数组形状操作

4.1 重塑数组形状

4.2 数组的转置

4.3 数组展平

4.4 改变数组的大小

4.5 堆叠数组

4.6 拆分数组


1  NumPy 基础概述

        NumPy(Numerical Python)是Python中用于数值计算的核心库之一。它提供了多维数组对象(称为ndarray),以及用于在这些数组上执行各种数学、逻辑、统计和线性代数操作的函数。NumPy是数据科学、机器学习、科学计算和工程领域的重要工具,它的设计目标是提供高性能、灵活性和易用性的数值计算工具。

1.1 NumPy的主要特点和功能

  1. 多维数组对象(ndarray):NumPy的核心数据结构是ndarray,这是一个类似于列表的多维数组,但具有以下特点:

    • 所有元素必须是相同数据类型。
    • 数组的形状可以是任意的,可以是一维、二维、三维等。
    • 数组的元素可以通过索引和切片访问。
  2. 高性能计算:NumPy的数组操作在底层是使用高度优化的C语言实现的,因此能够以非常高效的方式执行数值计算。这使得NumPy成为处理大规模数据集的首选工具。

  3. 广泛的数学函数:NumPy提供了丰富的数学函数,包括基本的算术操作、三角函数、指数和对数、统计函数、线性代数函数等。

  4. 随机数生成:NumPy包含随机数生成器,用于生成随机数和随机数组。这对于模拟和随机实验非常有用。

  5. 广播功能:NumPy允许您在不同形状的数组之间进行操作,通过广播功能,使得这些操作能够自动适应不同形状的数组,而无需显式编写循环。

  6. 文件输入输出:NumPy支持多种文件格式的读写,包括文本文件、二进制文件和NumPy的自定义二进制格式。

  7. 线性代数运算:NumPy提供了一组丰富的线性代数函数,如矩阵乘法、逆矩阵、特征值分解、奇异值分解等。

  8. 数据分析和科学计算:NumPy通常与其他库(如Pandas、SciPy和Matplotlib)一起使用,以进行数据分析、科学计算、数据可视化等任务。

  9. 开源和社区支持:NumPy是开源项目,拥有庞大的用户和开发者社区,因此您可以轻松获得文档、教程和支持。

        总之,NumPy是Python中不可或缺的库,它为数值计算提供了强大的工具,使得在Python中进行科学计算和数据分析变得更加方便和高效。如果您在数据科学、工程或科学研究方面工作,学习和掌握NumPy是非常重要的一步。您可以通过安装NumPy并查阅其官方文档来开始使用它。

 Numpy 官方手册:NumPy user guide — NumPy v1.25 Manualicon-default.png?t=N7T8https://numpy.org/doc/stable/user/index.html#user

1.2 NumPy 安装和导入

在使用NumPy之前,需要先安装它。您可以使用以下命令通过pip安装NumPy:

(1)用conda安装:

# Best practice, use an environment rather than install in the base env
conda create -n my-env
conda activate my-env
# If you want to install from conda-forge
conda config --env --add channels conda-forge
# The actual install command
conda install numpy

(2)用pip安装:

pip install numpy

安装完成后,您可以在Python中导入NumPy:

import numpy as np

        通常,人们将NumPy导入为np,以简化代码中的引用。 现在,您已经准备好开始使用NumPy进行数值计算了。

2 Numpy 数组

2.1 创建NumPy数组

使用np.array()函数可以从Python列表或元组创建NumPy数组:

# 创建一个一维数组
arr1 = np.array([1, 2, 3, 4, 5])# 创建一个二维数组
arr2 = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

2.2 数组的形状和维度

NumPy数组具有形状(shape)和维度(dimension),可以使用以下属性获取:

shape = arr.shape  # 形状,返回 (5,) 表示一维数组
dim = arr.ndim    # 维度,返回 1 表示一维数组

2.3 数组的数据类型

每个NumPy数组都有一个数据类型,可以使用dtype属性查看:

dtype = arr.dtype  # 返回数组的数据类型,如int64

2.4 访问和修改数组元素

您可以使用索引和切片来访问和修改数组的元素

element = arr[2]       # 获取索引为2的元素,值为3
sub_array = arr[1:4]   # 获取索引1到3的元素,结果为[2, 3, 4]
arr[0] = 10            # 修改索引0的元素为10

3 数组操作

3.1 数组运算

        NumPy支持对数组执行各种数学运算,例如加法、减法、乘法和除法。这些运算是按元素执行的:

import numpy as nparr1 = np.array([1, 2, 3])
arr2 = np.array([4, 5, 6])# 加法
result_addition = arr1 + arr2  # [5, 7, 9]# 减法
result_subtraction = arr1 - arr2  # [-3, -3, -3]# 乘法
result_multiplication = arr1 * arr2  # [4, 10, 18]# 除法
result_division = arr1 / arr2  # [0.25, 0.4, 0.5]

3.2 数学函数

NumPy提供了丰富的数学函数,您可以对整个数组或数组的元素进行操作。以下是一些示例:

import numpy as np# 数组用于演示数学函数的功能
arr = np.array([0, 1, 2, 3, 4, 5])# 计算指数函数
exp_values = np.exp(arr)
# exp_values 现在包含了arr中每个元素的e的幂次方结果# 计算自然对数函数(对数的逆函数)
log_values = np.log(arr + 1)
# 这里使用(arr + 1)来避免对0进行对数运算,因为对数函数不定义于0# 计算平方根
sqrt_values = np.sqrt(arr)
# sqrt_values 现在包含了arr中每个元素的平方根# 计算正弦函数
sin_values = np.sin(arr)
# sin_values 包含arr中每个元素的正弦值# 计算余弦函数
cos_values = np.cos(arr)
# cos_values 包含arr中每个元素的余弦值# 计算反正弦函数
asin_values = np.arcsin(arr / 5)
# asin_values 包含arr中每个元素的反正弦值# 计算反余弦函数
acos_values = np.arccos(arr / 5)
# acos_values 包含arr中每个元素的反余弦值# 计算四舍五入的整数值
round_values = np.round(arr / 2)
# round_values 包含arr中每个元素除以2并四舍五入后的整数值

具体示例:

import numpy as np# 求绝对值
absolute_value = np.abs([-1, -2, 3])  # [1 2 3]# 计算平方根
sqrt_value = np.sqrt([4, 9, 16])  # [2. 3. 4.]# 计算指数函数
exp_value = np.exp([1, 2, 3])  # [ 2.71828183  7.3890561  20.08553692]# 计算自然对数
log_value = np.log([1, 10, 100])  # [0. 2.30258509 4.60517019]# 计算以2为底的对数
log2_value = np.log2([1, 2, 4])  # [0. 1. 2.]# 计算以10为底的对数
log10_value = np.log10([1, 10, 100])  # [0. 1. 2.]# 计算幂函数
power_value = np.power([2, 3, 4], [2, 3, 2])  # [ 4 27 16]# 计算三角函数
sin_value = np.sin(np.pi / 2)  # 1.0
cos_value = np.cos(np.pi)  # -1.0# 计算反三角函数
arcsin_value = np.arcsin(1)  # 1.5707963267948966
arccos_value = np.arccos(0)  # 1.5707963267948966# 计算正切函数
tan_value = np.tan(np.pi / 4)  # 0.9999999999999999# 计算反正切函数
arctan_value = np.arctan(1)  # 0.7853981633974483# 计算双曲正弦函数
sinh_value = np.sinh(1)  # 1.1752011936438014# 计算双曲余弦函数
cosh_value = np.cosh(1)  # 1.5430806348152437# 计算双曲正切函数
tanh_value = np.tanh(1)  # 0.7615941559557649# 计算双曲反正弦函数
arcsinh_value = np.arcsinh(1)  # 0.881373587019543# 计算双曲反余弦函数
arccosh_value = np.arccosh(2)  # 1.3169578969248166# 计算双曲反正切函数
arctanh_value = np.arctanh(0.5)  # 0.5493061443340548# 计算四舍五入
round_value = np.round([1.2, 2.7, 3.5])  # [1. 3. 4.]# 计算向上取整
ceil_value = np.ceil([1.2, 2.7, 3.5])  # [2. 3. 4.]# 计算向下取整
floor_value = np.floor([1.2, 2.7, 3.5])  # [1. 2. 3.]

        以上是一系列NumPy中数学函数的示例,包括绝对值、平方根、指数函数、自然对数、以2为底的对数、以10为底的对数、幂函数、三角函数、反三角函数、双曲函数、反双曲函数、四舍五入、向上取整和向下取整。这些函数允许您执行各种数学运算和变换,对数据进行处理和分析。

3.3 统计函数

        NumPy提供了各种统计函数,可以帮助您分析数组的统计属性,如均值、总和、最大值和最小值等。以下是示例:

import numpy as np# 创建一个示例数组
data = np.array([1, 2, 2, 3, 3, 3, 4, 4, 4, 4])# 计算平均值
mean = np.mean(data)  # 平均值为 3.0# 计算中位数
median = np.median(data)  # 中位数为 3.0# 计算众数
from scipy import stats
mode = stats.mode(data)  # 众数为 ModeResult(mode=array([4]), count=array([4]))# 计算标准差
std_deviation = np.std(data)  # 标准差为 1.118033988749895# 计算方差
variance = np.var(data)  # 方差为 1.25# 计算最小值和最大值
min_value = np.min(data)  # 最小值为 1
max_value = np.max(data)  # 最大值为 4# 计算百分位数
percentile_25 = np.percentile(data, 25)  # 25th 百分位数为 2.25
percentile_75 = np.percentile(data, 75)  # 75th 百分位数为 3.75# 计算数据范围
data_range = np.ptp(data)  # 数据范围为 3# 计算数据的四分位距
iqr = np.percentile(data, 75) - np.percentile(data, 25)  # 四分位距为 1.5# 计算数据的和
total_sum = np.sum(data)  # 总和为 30# 计算累积和
cumulative_sum = np.cumsum(data)  # [ 1  3  5  8 11 14 18 22 26 30]# 计算累积积
cumulative_product = np.cumprod(data)  # [     1      2      4     12     36    108    432   1728   6912  27648]# 计算均方根(Root Mean Square)
rms = np.sqrt(np.mean(np.square(data)))  # 均方根为 2.160246899469287# 计算协方差矩阵
data1 = np.array([1, 2, 3, 4, 5])
data2 = np.array([5, 4, 3, 2, 1])
covariance_matrix = np.cov(data1, data2)  # 结果是一个协方差矩阵# 计算相关系数
correlation_coefficient = np.corrcoef(data1, data2)  # 结果是相关系数矩阵

示例演示了如何使用NumPy中的统计函数来计算各种统计量,包括平均值、中位数、众数、标准差、方差、最小值、最大值、百分位数、数据范围、四分位距、总和、累积和、累积积、均方根、协方差矩阵和相关系数。这些函数对于数据分析非常有用。

4 数组形状操作

4.1 重塑数组形状

        重塑数组的形状是常见的操作,特别是在与不同形状的数据进行操作时。使用reshape()函数可以改变数组的形状,但请注意新形状的元素数量必须与原始数组相同。

4.2 数组的转置

        数组的转置操作是将数组的行和列进行交换。您可以使用.T属性来获取数组的转置。

4.3 数组展平

        展平数组意味着将多维数组转换为一维数组。您可以使用ravel()函数或flatten()函数来实现这一目标。

4.4 改变数组的大小

        使用resize()函数可以改变数组的大小,不需要考虑新形状与原始数组的元素数量是否兼容。如果新数组大于原始数组,多余的元素将被填充0。

4.5 堆叠数组

        堆叠数组是将多个数组按垂直或水平方向堆叠在一起。您可以使用vstack()函数垂直堆叠和hstack()函数水平堆叠数组。

4.6 拆分数组

        拆分数组是将一个数组拆分成多个子数组。使用split()函数可以按指定位置拆分数组。

以上示例代码:

import numpy as np# 创建一个示例数组
arr = np.array([[1, 2, 3],[4, 5, 6]])# 1. 重塑数组形状 (reshape)
# 用于改变数组的形状,返回一个新的视图。
reshaped = arr.reshape(3, 2)
# 结果为:
# [[1 2]
#  [3 4]
#  [5 6]]# 2. 数组的转置 (T属性)
# 返回原始数组的转置,即交换行和列。
transposed = arr.T
# 结果为:
# [[1 4]
#  [2 5]
#  [3 6]]# 3. 改变数组的大小 (resize)
# 允许调整数组的大小,可以增加或减少元素的数量。
resized = np.resize(arr, (2, 4))
# 结果为:
# [[1 2 3 4]
#  [5 6 1 2]]# 4. 数组连接 (vstack, hstack)
# vstack用于垂直堆叠多个数组,hstack用于水平堆叠多个数组。
arr1 = np.array([1, 2])
arr2 = np.array([3, 4])
vertical_stack = np.vstack((arr1, arr2))
# 结果为:
# [[1 2]
#  [3 4]]horizontal_stack = np.hstack((arr1, arr2))
# 结果为:
# [1 2 3 4]# 5. 拆分数组 (split)
# 用于将一个数组拆分为多个子数组,可以指定拆分的位置。
split_arr = np.split(arr, 2)
# 在索引2处拆分数组,结果为两个子数组:
# 子数组1: [[1 2 3]]
# 子数组2: [[4 5 6]]# 6. 数组展平 (ravel, flatten)
# ravel和flatten函数用于将多维数组展平为一维数组。
flattened = arr.ravel()
# 结果为一维数组: [1 2 3 4 5 6]# 可以使用flatten()函数进行展平,效果相同:
flattened_using_flatten = arr.flatten()# 7. 更改数组的维度 (ndarray.shape)
# 使用数组的shape属性来直接更改数组的形状。
arr.shape = (3, 2)
# 这会将数组的形状更改为3x2。# 8. 调整数组的大小 (resize)
# resize函数也可用于调整数组的大小,但可以指定refcheck参数以避免数据损失。
resized = np.resize(arr, (2, 4), refcheck=False)
# 结果为:
# [[1 2 3 4]
#  [5 6 1 2]]

        这些数组形状操作在数据预处理、图像处理、机器学习、科学计算等领域都有广泛的应用。它们使得在处理不同形式和维度的数据时更加灵活,并且可以使数据适应不同的算法和任务。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/95556.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Kafka3.0.0版本——Leader故障处理细节原理

目录 一、服务器信息二、服务器基本信息及相关概念2.1、服务器基本信息2.2、LEO的概念2.3、HW的概念 三、Leader故障处理细节 一、服务器信息 三台服务器 原始服务器名称原始服务器ip节点centos7虚拟机1192.168.136.27broker0centos7虚拟机2192.168.136.28broker1centos7虚拟机…

Navicat介绍及下载安装教程

Navicat是一个广泛使用的数据库管理工具,可用于管理多种数据库系统,如MySQL、MariaDB、Oracle等。它提供了丰富的功能,使得管理数据库变得更加容易和高效。安装Navicat十分简单,只需下载安装包并按照向导进行操作即可。在安装完成…

Linux之虚拟主机功能

目录 虚拟主机功能 概述 基于 IP 地址的虚拟主机 原理 案例 --- 增加多个IP地址,实现基于不同IP地址的虚拟主机功能 基于端口号的虚拟主机 原理 案例 --- 基于不同端口号的虚拟主机 基于域名的虚拟主机 原理 域名解析 案例 --- 使用2个域名建立虚拟主机网…

Mybatis学习|注解开发、lombok

1.使用注解开发 无需再编写相应的Mapper.xml文件,直接将sql用注解的形式写在Mapper接口的对应方法上即可。 然后因为没有xml文件,所以要在mybatis-config.xml核心配置文件中注册这个Mapper接口,而不用去注册之前的Mapper.xml,这里其实如果用…

【leetcode 力扣刷题】字符串匹配之经典的KMP!!!

字符串子串匹配相关 28. 找出字符串中第一个匹配项的下标暴力求解KMP 459. 重复的子字符串暴力求解在SS中找S 以下是能用KMP求解的算法题,KMP是用于字符串匹配的经典算法【至今没学懂………啊啊啊】 28. 找出字符串中第一个匹配项的下标 题目链接:28. 找…

centos7快速修改密码

centos7快速修改密码 小白教程,一看就会,一做就成。 1.命令 #第一种,我经常用这个,这个不行了,会用到第二个echo 用户名:密码 | sudo chpasswd #例如下面 echo root:yegoo123 | chpasswd#第二种echo 密码|passwd --st…

Nexus仓库介绍以及maven deploy配置

一 、Nexus仓库介绍 首先介绍一下Nexus的四个仓库的结构: maven-central 代理仓库,代理了maven的中央仓库:https://repo1.maven.org/maven2/; maven-public 仓库组,另外三个仓库都归属于这个组,所以我们的…

华为云新生代开发者招募

开发者您好,我们是华为2012UCD的研究团队 为了解年轻开发者的开发现状和趋势 正在邀请各位先锋开发者,与我们进行2小时的线上交流(江浙沪附近可线下交流) 聊聊您日常开发工作中的产品使用需求 成功参与访谈者将获得至少300元京…

[Linux]进程程序替换

[Linux]进程程序替换 文章目录 [Linux]进程程序替换进程程序替换的意义见一见进程程序替换进程程序替换的原理进程程序替换中的写时拷贝介绍进程程序替换接口 进程程序替换的意义 Linux系统下使用fork系统函数创建子进程后,子进程只能执行继承的部分父进程代码&…

java对象创建的过程

1、检查指令的参数是否能在常量池中定位到一个类的符号引用 2、检查此符号引用代表的类是否已被加载、解析和初始化过。如果没有,就先执行相应的类加载过程 3、类加载检查通过后,接下来虚拟机将为新生对象分配内存。 4、内存分配完成之后,…

UART串口Shell软硬件模型分析总结

文章目录 层次一、最底层逻辑配置交互----如何从Uart硬件读写单个字节数据层次二、抽象串口软件模块交互----基于串口对接输入输出流 和 Printf适配层次三、类似Shell封装抽象交互----基于串口交互命令行界面(命令解析、补全、修改、记录)case1 依次输入…

Java-泛型

文章目录 Java泛型什么是泛型?在哪里使用泛型?设计出泛型的好处是什么?动手设计一个泛型泛型的限定符泛型擦除泛型的通配符 结论 Java泛型 什么是泛型? Java泛型是一种编程技术,它允许在编译期间指定使用的数据类型。…