《机器学习在车险定价中的应用》实验报告

 

目录

一、实验题目

        机器学习在车险定价中的应用

二、实验设置

1. 操作系统:

2. IDE:

3. python:

4. 库:

三、实验内容

实验前的猜想:

四、实验结果

1. 数据预处理及数据划分

独热编码处理结果(以地区为例)

2. 模型训练

3. 绘制初始决策树

4. 模型评价

5. 模型优化

绘制优化后的决策树

6. 修改样本、网格搜索参数进一步优化模型

五、实验分析


 

 

一、实验题目

        机器学习在车险定价中的应用

二、实验设置

1. 操作系统:

        Windows 11 Home

2. IDE:

        PyCharm 2022.3.1 (Professional Edition)

3. python

        3.8.0

4. 库:

numpy

1.20.0

 

matplotlib

3.7.1

 

pandas

1.1.5

 

scikit-learn

0.24.2

 

 

conda create -n ML python==3.8 pandas scikit-learn numpy matplotlib

三、实验内容

        本次实验使用决策树模型进行建模,实现对车险 数据的分析,车险数据为如下MTPLdata.csv数据集:

f2dccf851f8245909e63b5e927fd0e01.png

        该车险数据集包含了50万个样本,每个样本有8个特征和1个标签。其中,标签是一个二元变量,值为0或1,表示车主是否报告过车险索赔(clm,int64);特征包括车主的年龄(age,int64),车辆的年限(ac,int64)、功率(power,int64)、燃料类型(gas,object)、品牌(brand,object),车主所在地区(area,object)、居住地车辆密度(dens,int64)、以及汽车牌照类型(ct,object)。

实验前的猜想

        详见实验报告

四、实验结果

1. 数据预处理及数据划分

        将数据读入并进行数据预处理,包括哑变量处理和划分训练集和测试集

MTPLdata = pd.read_csv('MTPLdata.csv')
# 哑变量处理-独热编码
# 将clm列的数据类型转换为字符串
MTPLdata['clm'] = MTPLdata['clm'].map(str)
# 选择包括第1、2、3、4、5、6、7、8列的数据作为特征输入
# ac、brand、age、gas、power
X_raw = MTPLdata.iloc[:, [0, 1, 2, 3, 4]]
# X_raw = MTPLdata.iloc[:, [0, 1, 2, 3, 4, 5, 6, 7]]
# 对X进行独热编码
X = pd.get_dummies(X_raw)
# 选择第9列作为标签y
y = MTPLdata.iloc[:, 8]# 将数据划分为训练集和测试集,测试集占总数据的20%
X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, test_size=0.2, random_state=1)

 

独热编码处理结果(以地区为例)

bca076c069c04a629d08ec60ca4b6d9d.png

2. 模型训练

        我们使用决策树分类器模型进行训练(设定树的最大深度为2,使用平衡的类权重,并默认使用基尼系数检验准确度)。

model = DecisionTreeClassifier(max_depth=2, class_weight='balanced', random_state=123)
model.fit(X_train, y_train)     # 数据拟合
model.score(X_test, y_test)     # 在测试集上评估模型

3. 绘制初始决策树

        为了更好地解读决策树模型,调用plot_tree函数绘制决策树。

plt.figure(figsize=(11, 11))
plot_tree(model, feature_names=X.columns, node_ids=True, rounded=True, precision=2)
plt.show()

e3ef80d6c242491193ea5a23b4866f78.png

 

4. 模型评价

pred = model.predict(X_test)
table = pd.crosstab(y_test, pred, rownames=['Actual'], colnames=['Predicted'])
# table# 计算模型的准确率、错误率、召回率、特异度和查准率
table = np.array(table)  # 将pandas DataFrame转换为numpy array
Accuracy = (table[0, 0] + table[1, 1]) / np.sum(table)      # 准确率
Error_rate = 1 - Accuracy  # 错误率
Sensitivity = table[1, 1] / (table[1, 0] + table[1, 1])     # 召回率
Specificity = table[0, 0] / (table[0, 0] + table[0, 1])     # 特异度
Recall = table[1, 1] / (table[0, 1] + table[1, 1])          # 查准率

5. 模型优化

        为了寻找更优的模型,我们使用cost_complexity_pruning_path函数计算不同的ccp_alpha对应的决策树的叶子节点总不纯度,并绘制ccp_alpha与总不纯度之间的关系图。

model = DecisionTreeClassifier(class_weight='balanced', random_state=123)
path = model.cost_complexity_pruning_path(X_train, y_train)
plt.plot(path.ccp_alphas, path.impurities, marker='o', drawstyle='steps-post')
plt.xlabel('alpha (cost-complexity parameter)')
plt.ylabel('Total Leaf Impurities')
plt.title('Total Leaf Impurities vs alpha for Training Set')
plt.show()

                                        1w样本                                                             50w样本

74fe13bc704a4a1c9f27b316cd7fd8c6.png

         接着,我们通过交叉验证选择最优的ccp_alpha,并使用最优的ccp_alpha重新训练模型。

 

绘制优化后的决策树

rangeccpalpha = np.linspace(0.000001, 0.0001, 10, endpoint=True)
param_grid = {'max_depth':  np.arange(3, 7, 1),# 'ccp_alpha': rangeccpalpha,'min_samples_leaf': np.arange(1, 5, 1)
}
kfold = StratifiedKFold(n_splits=10, shuffle=True, random_state=1)
model = GridSearchCV(DecisionTreeClassifier(class_weight='balanced', random_state=123),param_grid, cv=kfold)
model.fit(X_train, y_train)

8a1af918529548a9b3d2294700c4d59d.png

 

此外,还计算了各个特征的重要性,并绘制了特征重要性图。

plt.figure(figsize=(20, 20))
sorted_index = model.feature_importances_.argsort()
plt.barh(range(X_train.shape[1]), model.feature_importances_[sorted_index])
plt.yticks(np.arange(X_train.shape[1]), X_train.columns[sorted_index])
plt.xlabel('Feature Importance')
plt.ylabel('Feature')
plt.title('Decision Tree')
plt.tight_layout()
plt.show()

d24a68bc5d2242bd9b054d558b1c8567.png

6. 修改样本、网格搜索参数进一步优化模型

 

   详见实验报告

 

五、实验分析

        请下载本实验对应的代码及实验报告资源(其中实验分析部分共2页、1162字)

      

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/95611.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C语言:三子棋小游戏

简介: 目标很简单:实现一个 三子棋小游戏。三子棋大家都玩过,规则就不提及了。本博文中实现的三子棋在对局中,电脑落子是随机的,不具有智能性,玩家的落子位置使用键盘输入坐标。下面开始详细介绍如何实现一…

LLMs之Code:Code Llama的简介、安装、使用方法之详细攻略

LLMs之Code:Code Llama的简介、安装、使用方法之详细攻略 导读:2023年08月25日(北京时间),Meta发布了Code Llama,一个可以使用文本提示生成代码的大型语言模型(LLM)。Code Llama是最先进的公开可用的LLM代码任务,并有潜…

Matlab(基本操作与矩阵输入)

目录 1.Matlab视窗详读 2.基本操作与矩阵输入 2.1 运算符的优先级 2.2 初等数学函数 2.3 嵌入函数 2.4 特殊变量和常量 2.5 Matlab的优先级调用 2.6 数字显示格式长 2.7 命令行中端 2.8 部分函数 2.9 向量和矩阵 2.10 数组索引 2.11 串联矩阵 2.12 生成数值序列 …

无涯教程-JavaScript - CUBEMEMBERPROPERTY函数

描述 CUBEMEMBERPROPERTY函数从多维数据集返回成员属性的值。使用此函数可以验证多维数据集中是否存在成员名称,并返回该成员的指定属性。 语法 CUBEMEMBERPROPERTY (connection, member_expression, property)争论 Argument描述Required/OptionalconnectionName of the co…

Linux开源防病毒引擎ClamAV

ClamAV官方地址:https://www.clamav.net 它支持Linux、BSD、windows、Mac OS X等系统。 在CentOS 8(Tencent OS 3.1)安装非常便利,可以使用yum。 yum install clamav 安装成功,就可以使用它进行病毒扫描检查了。 c…

Python基础篇(17):模块与包

一、as 关键字的使用 1、as 关键字的作用:给导入的模块取别名 import 测试1 as Test_1 import 测试2 as Test_2Test_1.say_hello() Test_2.say_hello() 二、if __name__ __main__ 1、作用 测试当前模块所编写的代码块,根据业务自主选择需要运行的代…

一百六十九、Hadoop——Hadoop退出NameNode安全模式与查看磁盘空间详情(踩坑,附截图)

一、目的 在海豚跑定时跑kettle的从Kafka到HDFS的任务时,由于Linux服务器的某个文件磁盘空间满了,导致Hadoop的NodeName进入安全模式,此时光执行hdfs dfsadmin -safemode leave命令语句没有效果(虽然显示Safe mode is OFF&#x…

[SWPUCTF 2022]——Web方向 详细Writeup

SWPUCTF 2022 ez_ez_php 打开环境得到源码 <?php error_reporting(0); if (isset($_GET[file])) {if ( substr($_GET["file"], 0, 3) "php" ) {echo "Nice!!!";include($_GET["file"]);} else {echo "Hacker!!";} }e…

从入门到精通,30天带你学会C++【第六天:与或非三兄弟和If判断语句(博主目前最长文章,2514字)】(学不会你找我)

目录 前言 计算机里的真和假 与或非三兄弟 与运算&#xff08;&&&#xff09; 具体说明表格&#xff1a; 举个栗子1&#xff1a; 或运算&#xff08;||&#xff09; 具体说明表格&#xff1a; 举个栗子2&#xff1a; 非运算&#xff08;!&#xff09; 具体…

No primary or single unique constructor found for interface java.util.List

1.问题描述 前端 请求的参数 是 query形式&#xff0c; 参数在url中 报错信息&#xff1a; java.lang.IllegalStateException: No primary or single unique constructor found for interface java.util.List2.解决办法 controller中的 请求方法 参数 加上 RequestParam

C语言:截断+整型提升+算数转换练习

详情关于整型提升、算数转换与截断见文章&#xff1a; 《C语言&#xff1a;整型提升》 《C语言&#xff1a;算数转换》 一、代码一 int main() { char a -1; signed char b -1; unsigned char c -1; printf("%d %d %d", a, b, c); return 0; } 求…

Spring——Spring读取文件

文章目录 1.通过 value 读取比较简单的配置信息2.通过ConfigurationProperties读取并与 bean 绑定3.通过ConfigurationProperties读取并校验4. PropertySource 读取指定 properties 文件5.题外话:Spring加载配置文件的优先级 很多时候我们需要将一些常用的配置信息比如阿里云os…