推荐个一行代码的Python可视化神器

学过Python数据分析的朋友都知道,在可视化的工具中,有很多优秀的三方库,比如matplotlib,seaborn,plotly,Boken,pyecharts等等。这些可视化库都有自己的特点,在实际应用中也广为大家使用。

plotly、Boken等都是交互式的可视化工具,结合Jupyter notebook可以非常灵活方便地展现分析后的结果。虽然做出的效果非常的炫酷,比如plotly,但是每一次都需要写很长的代码,一是麻烦,二是不便于维护。

我觉得在数据的分析阶段,更多的时间应该放在分析上,维度选择、拆解合并,业务理解和判断。如果既可以减少代码量,又可以做出炫酷可视化效果,那将大大提高效率。当然如果有特别的需求除外,此方法仅针对想要快速可视化进行分析的人。

技术交流

技术要学会分享、交流,不建议闭门造车。一个人可以走的很快、一堆人可以走的更远。

相关文件及代码都已上传,均可加交流群获取,群友已超过2000人,添加时最好的备注方式为:来源+兴趣方向,方便找到志同道合的朋友。

方式①、添加微信号:dkl88194,备注:来自CSDN + 加群
方式②、微信搜索公众号:Python学习与数据挖掘,后台回复:加群

本篇给大家介绍一个非常棒的工具,cufflinks,可以完美解决这个问题,且效果一样炫酷。

cufflinks介绍

就像seaborn封装了matplotlib一样,cufflinks在plotly的基础上做了一进一步的包装,方法统一,参数配置简单。其次它还可以结合pandas的dataframe随意灵活地画图。可以把它形容为**“pandas like visualization”**

毫不夸张地说,画出各种炫酷的可视化图形,我只需一行代码,效率非常高,同时也降低了使用的门槛儿。

cufflinks的github链接如下:

https://github.com/santosjorge/cufflinks

cufflinks安装

安装不多说,直接pip install即可。

pip install cufflinks

cufflinks如何使用?

cufflinks库一直在不断更新,目前最新版为V0.14.0,支持plotly3.0。首先我们看看它都支持哪些种类的图形,可以通过help来查看。

import cufflinks as cf
cf.help()Use 'cufflinks.help(figure)' to see the list of available parameters for the given figure.
Use 'DataFrame.iplot(kind=figure)' to plot the respective figure
Figures:barboxbubblebubble3dcandlechoropletdistplotheatmaphistogramohlcpieratioscatterscatter3dscattergeospreadsurfaceviolin

使用方法其实很简单,我总结一下,它的格式大致是这样的:

图片

  • DataFrame: 代表pandas的数据框;

  • Figure: 代表我们上面看到的可绘制图形,比如bar、box、histogram等等;

  • iplot: 代表绘制方法,其中有很多参数可以进行配置,调节符合你自己风格的可视化图形;

cufflinks实例

我们通过几个实例感受一下上面的使用方法。使用过plotly的朋友可能知道,如果使用online模式,那么生成的图形是有限制的。所以,我们这里先设置为offline模式,这样就避免了出现次数限制问题。

import pandas as pd
import cufflinks as cf
import numpy as npcf.set_config_file(offline=True)

然后我们需要按照上面的使用格式来操作,首先我们需要有个DataFrame,如果手头没啥数据,那可以先生成个随机数。cufflinks有一个专门生成随机数的方法,叫做datagen,用于生成不同维度的随机数据,比如下面。

lines线图

cf.datagen.lines(1,500).ta_plot(study='sma',periods=[13,21,55])

1)cufflinks使用datagen生成随机数;

2)figure定义为lines形式,数据为(1,500);

3)然后再用ta_plot绘制这一组时间序列,参数设置SMA展现三个不同周期的时序分析。

图片

box箱型图

还是与上面用法一样,一行代码解决。

cf.datagen.box(20).iplot(kind='box',legend=False)

图片

可以看到,x轴每个box都有对应的名称,这是因为cufflinks通过kind参数识别了box图形,自动为它生成的名字。如果我们只生成随机数,它是这样子的,默认生成100行的随机分布的数据,列数由自己选定。

图片

histogram直方图

cf.datagen.histogram(3).iplot(kind='histogram')

图片

和plotly一样,我们可以通过一些辅助的小工具框选或者lasso选择来区分和选定指定区域,只要一行代码。

当然了,除了随机数据,任何的其它dataframe数据框都可以,包括我们自己导入的数据。

histogram条形图

df=pd.DataFrame(np.random.rand(10, 4), columns=['a', 'b', 'c', 'd'])
df.iplot(kind='bar',barmode='stack')

图片

上面我们生成了一个(10,4)的dataframe数据框,名称分别是a,b,c,d。那么cufflinks将会根据iplot中的kind种类自动识别并绘制图形。参数设置为堆叠模式。

scatter散点图

df = pd.DataFrame(np.random.rand(50, 4), columns=['a', 'b', 'c', 'd'])
df.iplot(kind='scatter',mode='markers',colors=['orange','teal','blue','yellow'],size=10)

图片

bubble气泡图

df.iplot(kind='bubble',x='a',y='b',size='c')

图片

scatter matrix 散点矩阵图

df = pd.DataFrame(np.random.randn(1000, 4), columns=['a', 'b', 'c', 'd'])
df.scatter_matrix()

图片

subplots 子图

df=cf.datagen.lines(4)
df.iplot(subplots=True,shape=(4,1),shared_xaxes=True,vertical_spacing=.02,fill=True)

图片

df.iplot(subplots=True,subplot_titles=True,legend=False)

图片

再比如复杂一点的。

df=cf.datagen.bubble(10,50,mode='stocks')
figs=cf.figures(df,[dict(kind='histogram',keys='x',color='blue'),dict(kind='scatter',mode='markers',x='x',y='y',size=5),dict(kind='scatter',mode='markers',x='x',y='y',size=5,color='teal')],asList=True)
figs.append(cf.datagen.lines(1).figure(bestfit=True,colors=['blue'],bestfit_colors=['pink']))
base_layout=cf.tools.get_base_layout(figs)
sp=cf.subplots(figs,shape=(3,2),base_layout=base_layout,vertical_spacing=.15,horizontal_spacing=.03,specs=[[{'rowspan':2},{}],[None,{}],[{'colspan':2},None]],subplot_titles=['Histogram','Scatter 1','Scatter 2','Bestfit Line'])
sp['layout'].update(showlegend=False)
cf.iplot(sp)

图片

shapes 形状图

如果我们想在lines图上增加一些直线作为参考基准,这时候我们可以使用hlines的类型图。

df=cf.datagen.lines(3,columns=['a','b','c'])
df.iplot(hline=[dict(y=-1,color='blue',width=3),dict(y=1,color='pink',dash='dash')])

图片

或者是将某个区域标记出来,可以使用hspan类型。

df.iplot(hspan=[(-1,1),(2,5)])

图片

又或者是竖条的区域,可以用vspan类型。

df.iplot(vspan={'x0':'2015-02-15','x1':'2015-03-15','color':'teal','fill':True,'opacity':.4})

图片

如果对iplot中的参数不熟练,直接输入以下代码即可查询。

help(df.iplot)

总结

怎么样,是不是非常快捷方便?以上介绍是一般的可绘制类型,当然你可以根据自己的需求做出更多的可视化图形。如果是常规图形,一行即可实现。除此外,cufflinks还有强大的颜色管理功能,如果感兴趣可以自行学习。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/95883.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【LLM】chatglm-6B模型训练和推理

本篇文章记录下 chatglm-6B 训练和推理过程 环境:Ubuntu 20.04 1.13.0cu116 chatglm-6B 源代码仓库:链接 chatglm-6B 模型权重:链接 源代码及模型 clone 到本地 这里使用的是 THUDM 在 hugging face 开源的模型。 因为模型比较大&#xff…

《Python魔法大冒险》004第一个魔法程序

在图书馆的一个安静的角落,魔法师和小鱼坐在一张巨大的桌子前。桌子上摆放着那台神秘的笔记本电脑。 魔法师: 小鱼,你已经学会了如何安装魔法解释器和代码编辑器。是时候开始编写你的第一个Python魔法程序了! 小鱼:(兴奋地两眼放光)我准备好了! 魔法师: 不用担心,…

为什么删除Windows 11上的Bloatware可以帮助加快你的电脑速度

如果你感觉你的电脑迟钝,彻底清除软件会有所帮助,而且这个过程对Windows用户来说越来越容易。 微软正在使删除以前难以删除的其他预装Windows应用程序成为可能。专家表示,这项新功能可能会改变用户的游戏规则。 科技公司Infatica的主管Vlad…

Docker从认识到实践再到底层原理(二-1)|容器技术发展史+虚拟化容器概念和简介

前言 那么这里博主先安利一些干货满满的专栏了! 首先是博主的高质量博客的汇总,这个专栏里面的博客,都是博主最最用心写的一部分,干货满满,希望对大家有帮助。 高质量博客汇总 然后就是博主最近最花时间的一个专栏…

SourceTree 使用技巧

参考资料 SourceTree使用教程(一)—克隆、提交、推送SourceTree的软合并、混合合并、强合并区别SourceTree 合并分支上的多个提交,一次性合并分支的多次提交至另一分支,主分支前进时的合并冲突解决 目录 一. 基础设置1.1 用户信息…

人员位置管理,点亮矿山安全之路

矿山作为一个高危行业,安全问题一直备受关注。人员定位置管理是现代矿山安全管理的重要一环,可以帮助企业更好地实现对人员的实时监控和管理。因此,矿山人员位置管理系统对于矿山安全生产和管理非常重要,可以帮助减少安全事故的发…

vue的 ECMAScript 6的学习

一 ECMAScript 6 1.1 ECMAScript 6 ECMAScript 和 JavaScript 的关系是,前者是后者的规格,后者是前者的一种实现(另外的 ECMAScript 方言还有 Jscript 和 ActionScript)。 因此,ES6 既是一个历史名词,也…

通过参数化可变形曲线直接从 X 射线投影数据计算分割研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…

Shell开发实践:服务器的磁盘、CPU、内存的占用监控

🏆作者简介,黑夜开发者,CSDN领军人物,全栈领域优质创作者✌,CSDN博客专家,阿里云社区专家博主,2023年6月CSDN上海赛道top4。 🏆数年电商行业从业经验,历任核心研发工程师…

iOS开发Swift-4-IBAction,group,音乐播放器-木琴App

1.使用素材创建木琴App的UI。 2.连接IBAction。 其余按钮直接拖拽到play里边。 当鼠标置于1处时2处显示如图,表示成功。当用户按下任一按钮都会触发play中的内容。 3.将7个按钮的View中的Tag值分别调为1、2、3、4、5、6、7. 4.将音频文件拖入项目文件中。 Create gr…

Arcface部署应用实战

1、概述 人脸识别的一个比较常用的网络arcface,依赖于其特殊设计的loss函数,使得模型在训练的时候能够实现类间距离增大,类内的距离不断减小,最终使得所训练的backbone能够获取鉴别性很高的特征,便于人脸识别。 本文…

POI-TL制作word

本文相当于笔记,主要根据官方文档Poi-tl Documentation和poi-tl的使用(最全详解)_JavaSupeMan的博客-CSDN博客文章进行学习(上班够用) Data AllArgsConstructor NoArgsConstructor ToString EqualsAndHashCode public …