【100天精通Python】Day53:Python 数据分析_NumPy数据操作和分析进阶

目录

1. 广播

 2 文件输入和输出

3 随机数生成

4 线性代数操作

 5 进阶操作

6  数据分析示例


1. 广播

        广播是NumPy中的一种机制,用于在不同形状的数组之间执行元素级操作,使它们具有兼容的形状。广播允许你在不显式复制数据的情况下,对不同形状的数组进行运算。当你尝试对形状不同的数组进行操作时,NumPy会自动调整这些数组的形状,使它们具有兼容的形状,以便进行元素级运算。

广播规则和示例: 广播的规则如下:

  1. 如果两个数组的维度不同,将维度较小的数组的形状在其前面补1,直到两个数组的维度相同。
  2. 如果两个数组的形状在某个维度上不一致,但其中一个数组的维度大小为1,那么这个维度的大小将被扩展为与另一个数组相同。
  3. 如果两个数组在任何维度上的大小都不匹配且没有一个维度的大小为1,则广播操作将失败,引发异常。

示例:

  • 广播规则和示例
import numpy as np# 广播示例1:将标量与数组相乘
scalar = 2
array = np.array([1, 2, 3])
result = scalar * array
print("广播示例1结果:", result)  # 输出:[2 4 6]# 广播示例2:将一维数组与二维数组相加
a = np.array([1, 2, 3])
b = np.array([[10, 20, 30], [40, 50, 60]])
result = a + b
print("广播示例2结果:\n", result)
# 输出:
# [[11 22 33]
#  [41 52 63]]# 广播示例3:形状不兼容的情况
a = np.array([1, 2, 3])
b = np.array([10, 20])
try:result = a + b
except ValueError as e:print("广播示例3结果(异常):", e)
# 输出:广播示例3结果(异常):operands could not be broadcast together with shapes (3,) (2,)

 2 文件输入和输出

读取文本文件:

  • np.loadtxt():用于从文本文件中读取数据并返回一个NumPy数组。
  • np.genfromtxt():用于从文本文件中读取数据,并根据需要自动处理缺失值和数据类型。

写入文本文件:

  • np.savetxt():用于将NumPy数组写入文本文件。

读取和写入二进制文件:

  • np.save():将NumPy数组以二进制格式保存到磁盘文件中。
  • np.load():从磁盘文件中加载保存的NumPy数组。

示例:

import numpy as np# 读取文本文件
data = np.loadtxt('data.txt')  # 从文本文件中读取数据# 写入文本文件
np.savetxt('output.txt', data, delimiter=',')  # 将数据写入文本文件,使用逗号作为分隔符# 读取和写入二进制文件
arr = np.array([1, 2, 3])
np.save('array_data.npy', arr)  # 保存数组到二进制文件
loaded_arr = np.load('array_data.npy')  # 从二进制文件中加载数组

3 随机数生成

生成随机数:

  • np.random.rand():生成均匀分布的随机数数组。
  • np.random.randn():生成标准正态分布(平均值为0,标准差为1)的随机数数组。
  • np.random.randint():生成指定范围内的随机整数。

随机种子:

  • np.random.seed():用于设置随机数生成器的种子,以确保生成的随机数可重复。

示例:

import numpy as np# 生成随机数
random_numbers = np.random.rand(3, 3)  # 生成3x3的均匀分布的随机数数组
standard_normal = np.random.randn(2, 2)  # 生成2x2的标准正态分布的随机数数组
random_integers = np.random.randint(1, 10, size=(2, 3))  # 生成2x3的随机整数数组,范围在1到10之间# 设置随机种子以可重复生成相同的随机数
np.random.seed(42)
random_a = np.random.rand(3)
np.random.seed(42)  # 使用相同的种子
random_b = np.random.rand(3)

        当你使用相同的随机种子值(在上述示例中是42)时,np.random 模块将生成相同的随机数序列。这对于研究、实验和调试非常有用,因为它确保了随机性的可复制性。例如:

import numpy as npnp.random.seed(42)
random_a = np.random.rand(3)# 使用相同的种子值生成相同的随机数序列
np.random.seed(42)
random_b = np.random.rand(3)# random_a 和 random_b 应该是相同的
print(random_a)
print(random_b)

        这将产生相同的随机数序列,使得 random_arandom_b 的值相等。

        请注意,如果你在不同地方使用相同的种子值,你将在这些地方生成相同的随机数序列。但是,如果你更改种子值,将生成不同的随机数序列。

        随机数生成和随机种子在模拟、机器学习实验以及需要可重复性的应用中非常重要。使用随机种子可以确保你的实验结果是可复制的,而不受随机性的影响。

4 线性代数操作

        线性代数在科学计算中起着关键作用,NumPy提供了许多用于处理矩阵和向量的线性代数操作。

  • 矩阵乘法:np.dot()@运算符
  • 逆矩阵和伪逆矩阵:np.linalg.inv()np.linalg.pinv()
  • 特征值和特征向量:np.linalg.eig()
  • 奇异值分解(SVD):np.linalg.svd()

矩阵乘法:可以使用 np.dot() 函数或 @ 运算符进行矩阵乘法。

示例:

import numpy as npA = np.array([[1, 2], [3, 4]])
B = np.array([[5, 6], [7, 8]])result = np.dot(A, B)  # 或者使用 result = A @ B

逆矩阵和伪逆矩阵:可以使用 np.linalg.inv() 计算逆矩阵,以及 np.linalg.pinv() 计算伪逆矩阵(当矩阵不可逆时使用伪逆矩阵)。

示例:

import numpy as npA = np.array([[1, 2], [3, 4]])
inverse_A = np.linalg.inv(A)
pseudo_inverse_A = np.linalg.pinv(A)

特征值和特征向量:可以使用 np.linalg.eig() 计算矩阵的特征值和特征向量。

示例:

import numpy as npA = np.array([[1, 2], [2, 3]])
eigenvalues, eigenvectors = np.linalg.eig(A)

奇异值分解(SVD):可以使用 np.linalg.svd() 进行奇异值分解,将矩阵分解为三个矩阵的乘积。

示例:

import numpy as npA = np.array([[1, 2], [3, 4], [5, 6]])
U, S, VT = np.linalg.svd(A)

 5 进阶操作

5.1 索引和切片技巧:

NumPy允许使用布尔掩码、整数数组索引等高级索引技巧来访问和修改数组的元素。

  1. 基本切片(Basic Slicing)

    • 基本切片通过指定开始索引、结束索引和步长来提取数组的子数组。
    • 示例:arr[2:5] 提取索引2到4的元素,arr[1:5:2] 使用步长提取元素。
  2. 布尔掩码(Boolean Masking)

    • 布尔掩码允许你根据某些条件来选择数组中的元素,条件通常是布尔表达式。
    • 示例:arr[arr > 2] 选择大于2的元素。
  3. 整数数组索引(Integer Array Indexing)

    • 使用整数数组作为索引,可以选择或重排数组中的元素。
    • 示例:arr[indices] 使用整数数组 indices 选择指定索引的元素。
  4. 多维数组切片

    • 对多维数组进行切片时,可以分别指定不同维度的切片条件。
    • 示例:arr2[1:3, 0:2] 选择第2和第3行的前2列。

代码示例:

import numpy as np# 基本切片示例
arr = np.array([0, 1, 2, 3, 4, 5])
sub_array1 = arr[2:5]  # 提取子数组,结果为 [2, 3, 4]
sub_array2 = arr[1:5:2]  # 使用步长,结果为 [1, 3]# 布尔掩码示例
mask = arr > 2
result = arr[mask]  # 选择大于2的元素,结果为 [3, 4, 5]# 整数数组索引示例
indices = np.array([0, 2, 4])
result2 = arr[indices]  # 使用整数数组索引,结果为 [0, 2, 4]# 多维数组切片示例
arr2 = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
sub_array3 = arr2[1:3, 0:2]  # 选择第2和第3行的前2列
# 结果为
# [[4, 5],
#  [7, 8]]# 输出结果
print("基本切片示例1:", sub_array1)
print("基本切片示例2:", sub_array2)
print("布尔掩码示例:", result)
print("整数数组索引示例:", result2)
print("多维数组切片示例:\n", sub_array3)

5.2 数组排序

        NumPy提供了 np.sort()np.argsort() 用于对数组进行排序和返回排序后的索引。

示例:

import numpy as nparr = np.array([3, 1, 2, 4, 5])
sorted_arr = np.sort(arr)  # 对数组进行排序
sorted_indices = np.argsort(arr)  # 返回排序后的索引

示例1:按值排序

import numpy as nparr = np.array([3, 1, 2, 4, 5])
sorted_arr = np.sort(arr)  # 按值升序排序,结果为[1, 2, 3, 4, 5]

 示例2:按索引排序

import numpy as nparr = np.array([3, 1, 2, 4, 5])
indices = np.argsort(arr)  # 获取按值排序后的索引,结果为[1, 2, 0, 3, 4]
sorted_arr = arr[indices]  # 按索引排序,结果为[1, 2, 3, 4, 5]

5.3 结构化数组

结构化数组允许存储和操作不同数据类型的数据,类似于数据库的表格。

示例:

import numpy as npdata = np.array([(1, 'Alice', 25), (2, 'Bob', 30)],dtype=[('ID', 'i4'), ('Name', 'U10'), ('Age', 'i4')])# 访问结构化数组的元素
print(data['Name'])  # 输出['Alice', 'Bob']

6  数据分析示例

我们将加载一个包含学生考试成绩的CSV文件,计算平均分、分数分布和绘制直方图。

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt# 加载CSV文件数据
data = pd.read_csv('student_scores.csv')# 提取分数列作为NumPy数组
scores = data['Score'].values# 计算统计信息
mean_score = np.mean(scores)
median_score = np.median(scores)
std_deviation = np.std(scores)# 绘制直方图
plt.hist(scores, bins=10, edgecolor='k', alpha=0.7)
plt.title('Score Distribution')
plt.xlabel('Score')
plt.ylabel('Frequency')
plt.show()# 打印统计信息
print(f"Mean Score: {mean_score}")
print(f"Median Score: {median_score}")
print(f"Standard Deviation: {std_deviation}")

         在这个示例中,我们首先使用Pandas库加载CSV文件,然后提取其中的分数列并将其转换为NumPy数组。接下来,我们使用NumPy计算平均分、中位数和标准差。最后,我们使用Matplotlib库绘制了分数的直方图。

        这个示例展示了如何使用NumPy与其他库一起进行更复杂的数据分析任务,包括数据加载、计算统计信息和可视化数据。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/96987.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

I2C与I3C的对比

I2C与I3C的对比 电气特性 I2C 1.半双工 2.串行数据线(SDA)和串行时钟线(SCL) 3.数据线漏极开路,即I2C接口接上拉电阻 4.I2C总线运行速度:**标准模式100kbit/s,快速模式400kbit/s,快速模式plus 1Mbit/s,**高速模式…

IDEA 报 Cannot resolve symbol ‘HttpServletResponse‘ 解决

springboot2版本换成springboot3之后,代码这里突然报红了, 首先要淡定,把原先Import的引入删掉,重新引入试试呢,是不是很简单哈哈。 原来,springboot3的路径是: import jakarta.servlet.http…

关于大模型参数微调的不同方法

Adapter Tuning 适配器模块(Adapter Moudle)可以生成一个紧凑且可扩展的模型;每个任务只需要添加少量可训练参数,并且可以在不重新访问之前任务的情况下添加新任务。原始网络的参数保持不变,实现了高度的参数共享 Pa…

【python】—— 函数详解

前言: 本期,我们将要讲解的是有关python中函数的相关知识!!! 目录 (一)函数是什么 (二)语法格式 (三)函数参数 (四)函…

微信仿H5支付

仿H5支付是指一种模拟原生H5支付流程的非官方支付方式。这种支付方式通常是由第三方支付服务提供商开发和维护的,目的是为了绕过官方支付渠道的限制,如费率、审核等问题。然而,由于仿H5支付并非官方授权和认可的支付方式,其安全性…

【C语言】深度讨论使代码更严谨,更优雅的方式

🚩纸上得来终觉浅, 绝知此事要躬行。 🌟主页:June-Frost 🚀专栏:C语言 🔥该篇将从多个部分探讨如何写出更严谨,更优雅的代码。 🌏该文章借鉴《高质量 C/C 编程指南》——…

北京APP外包开发需要注意的问题

开发APP的过程中,由于开发APP需要投入大量的时间、精力和资源,所以在开始前一定要做好充足的准备和规划。您需要注意以下重点,希望对大家有所帮助。北京木奇移动技术有限公司,专业的软件外包开发公司,欢迎交流合作。 1…

深入剖析 Golang 程序启动原理 - 从 ELF 入口点到GMP初始化到执行 main!

大家好,我是飞哥! 在过去的开发工作中,大家都是通过创建进程或者线程来工作的。Linux进程是如何创建出来的? 、聊聊Linux中线程和进程的联系与区别! 和你的新进程是如何被内核调度执行到的? 这几篇文章就是…

ChatGPT Prompting开发实战(四)

一、chaining prompts应用解析及输出文本的设定 由于输入和输出都是字符串形式的自然语言,为了方便输入和输出信息与系统设定使用的JSON格式之间进行转换,接下来定义从输入字符串转为JSON list的方法: 定义从JSON list转为输出字符串的方法&…

[杂谈]-2023年实现M2M的技术有哪些?

2023年实现M2M的技术有哪些? 文章目录 2023年实现M2M的技术有哪些?1、寻找连接2、M2M与IoT3、流行的 M2M 协议 在当今的数字世界中,机器对机器 (M2M) 正在迅速成为标准。 M2M 包括使联网设备能够交换数据或信息的任何技术。 它可以是有线或无…

MongoDB 会丢数据吗? 在次补刀MongoDB 双机热备

开头还是介绍一下群,如果感兴趣PolarDB ,MongoDB ,MySQL ,PostgreSQL ,Redis ,Oracle ,Oceanbase 等有问题,有需求都可以加群群内有各大数据库行业大咖,CTO,可以解决你的问题。加群请加微信号 liuaustin3 (…

2023开学礼山东财经大学《乡村振兴战略下传统村落文化旅游设计》许少辉新财经图书馆

2023开学礼山东财经大学《乡村振兴战略下传统村落文化旅游设计》许少辉新财经图书馆