Pytorch中如何加载数据、Tensorboard、Transforms的使用

一、Pytorch中如何加载数据
在Pytorch中涉及到如何读取数据,主要是两个类一个类是Dataset、Dataloader
Dataset 提供一种方式获取数据,及其对应的label。主要包含以下两个功能:
如何获取每一个数据以及label
告诉我们总共有多少的数据

Dataloader,可以对数据进行打包,为后面的网络提供不同的数据形式。

二、Tensorboard的使用,用来观察训练结果

from torch.utils.tensorboard import SummaryWriterwriter = SummaryWriter("log")# writer.add_image()for i in range(100):writer.add_scalar("y=x", i, i)writer.close()

在Terminal中先切换到conda activate pytorch
使用命令 tensorboard --logdir=logs
在这里插入图片描述

TensorBoard的使用
1、使用add_image()方法

from torch.utils.tensorboard import SummaryWriter
import numpy as np
from PIL import Image
# 利用openCV中的numpy库可以获得numpy型的图片writer = SummaryWriter("log")
img_path = "../dataset/bees/26589803_5ba7000313.jpg"
img_PIL = Image.open(img_path)    # 打开图片
img_array = np.array(img_PIL)     # 图片转换
print(type(img_array))   # 打印图片类型
print(img_array.shape)  # 打印图片格式writer.add_images("test", img_array, 2, dataformats='HWC')  # 根据img_array.shape来指定,如果不指定dataformats就会报错
# y = 2x
for i in range(100):writer.add_scalar("y=2x", 2*i, i)writer.close()

在这里插入图片描述
三、Transforms的使用
transform表示对图片进行一些变换
python的用法 -> tensor数据类型
通过transform.ToTensor去解决两个问题:
transforms该如何使用(Python)
为什么我们需要Tensor的数据类型?
在这里插入图片描述

from torchvision import transforms
from PIL import Imageimg_path = "../dataset/bees/10870992_eebeeb3a12.jpg"
img = Image.open(img_path)
tensor_trans = transforms.ToTensor()
tensor_img = tensor_trans(img)
print(tensor_img)

运行后的结果

D:\tools\anaconda\envs\pytorch\python.exe D:/code/captcha_ocr-main/learn/transforms.py
tensor([[[0.5725, 0.5725, 0.5725,  ..., 0.5686, 0.5725, 0.5765],[0.5725, 0.5725, 0.5725,  ..., 0.5686, 0.5725, 0.5765],[0.5686, 0.5686, 0.5725,  ..., 0.5686, 0.5725, 0.5765],...,[0.5490, 0.5647, 0.5725,  ..., 0.6314, 0.6235, 0.6118],[0.5608, 0.5765, 0.5843,  ..., 0.5961, 0.5843, 0.5765],[0.5725, 0.5843, 0.5922,  ..., 0.5647, 0.5529, 0.5490]],[[0.4471, 0.4471, 0.4471,  ..., 0.4235, 0.4275, 0.4314],[0.4471, 0.4471, 0.4471,  ..., 0.4235, 0.4275, 0.4314],[0.4431, 0.4431, 0.4471,  ..., 0.4235, 0.4275, 0.4314],...,[0.4000, 0.4157, 0.4235,  ..., 0.4706, 0.4627, 0.4510],[0.4118, 0.4275, 0.4353,  ..., 0.4431, 0.4314, 0.4235],[0.4235, 0.4353, 0.4431,  ..., 0.4118, 0.4000, 0.3961]],[[0.2471, 0.2471, 0.2471,  ..., 0.2588, 0.2627, 0.2667],[0.2471, 0.2471, 0.2471,  ..., 0.2588, 0.2627, 0.2667],[0.2431, 0.2431, 0.2471,  ..., 0.2588, 0.2627, 0.2667],...,[0.2157, 0.2314, 0.2392,  ..., 0.2510, 0.2431, 0.2314],[0.2275, 0.2431, 0.2510,  ..., 0.2196, 0.2078, 0.2000],[0.2392, 0.2510, 0.2588,  ..., 0.1961, 0.1843, 0.1804]]])Process finished with exit code 0

加载tensor类型的图片:

from torchvision import transforms
from PIL import Image
from torch.utils.tensorboard import SummaryWriter
img_path = "../dataset/bees/10870992_eebeeb3a12.jpg"
img = Image.open(img_path)
writer = SummaryWriter("log")
tensor_trans = transforms.ToTensor()
tensor_img = tensor_trans(img)
writer.add_image("Tensor_img", tensor_img)
writer.close()

四、常见的transforms类的使用

  1. ToTensor类
    将PIL图片转换成tensor图片。
from torchvision import transforms
from PIL import Image
from torch.utils.tensorboard import SummaryWriter
# Tensor的使用
writer = SummaryWriter("log")
img_path = "../dataset/bees/10870992_eebeeb3a12.jpg"
img = Image.open(img_path)
print(img)
tensor_trans = transforms.ToTensor()    # 创建ToTensor()对象
tensor_img = tensor_trans(img)    # 传入图片参数,将PIL图片转换成tensor图片
writer.add_image("Tensor_img", tensor_img)
writer.close()

在这里插入图片描述
2. Normalize类

对tensor类型的图片进行归一化处理。
Normalize的使用:归一化处理
公式:output[channel] = (input[channel] - mean[channel]) / std[channel]

from torchvision import transforms
from PIL import Image
from torch.utils.tensorboard import SummaryWriter# Tensor的使用
writer = SummaryWriter("log")
img_path = "../dataset/bees/10870992_eebeeb3a12.jpg"
img = Image.open(img_path)
print(img)tensor_trans = transforms.ToTensor()
tensor_img = tensor_trans(img)writer.add_image("Tensor_img", tensor_img)# Normalize的使用
print(tensor_img[0][0][0])    # 归一化处理之前的数据
trans_norm = transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
img_norm = trans_norm(tensor_img)
print(img_norm[0][0][0])     # 归一化处理后的结果
writer.add_image("Normalize", img_norm)writer.close()

在这里插入图片描述
在这里插入图片描述
3. Resize类:
重置图片大小。

from torchvision import transforms
from PIL import Image
from torch.utils.tensorboard import SummaryWriter# Tensor的使用
writer = SummaryWriter("log")
img_path = "../dataset/bees/10870992_eebeeb3a12.jpg"
img = Image.open(img_path)
print(img)tensor_trans = transforms.ToTensor()
tensor_img = tensor_trans(img)writer.add_image("Tensor_img", tensor_img)print(tensor_img[0][0][0])    # 归一化处理之前的数据
trans_norm = transforms.Normalize([1, 3, 5], [3, 2, 1])
img_norm = trans_norm(tensor_img)
print(img_norm[0][0][0])     # 归一化处理后的结果
writer.add_image("Normalize", img_norm)writer.close()# Resize的使用:重置图片大小
print(img.size)    # (500, 464) 
trans_resize = transforms.Resize((512, 512))img_resize = trans_resize(img)
print(img_resize)   # <PIL.Image.Image image mode=RGB size=512x512 at 0x2A17E774248> img_resize = tensor_trans(img_resize)
writer.add_image("Resize", img_resize, 0)
print("" + img_resize)
writer.close()

在这里插入图片描述
在这里插入图片描述
4. Compose的使用
等比例缩放。
Compose的使用:整体缩放,不改变高宽比例
Compose()中的参数需要的是一个列表,列表中的数据需要的是transforms类型。
即 Compose([transforms参数1, transforms参数2, …])

from torchvision import transforms
from PIL import Image
from torch.utils.tensorboard import SummaryWriter# Tensor的使用
writer = SummaryWriter("log")
img_path = "../dataset/bees/10870992_eebeeb3a12.jpg"
img = Image.open(img_path)
print(img)tensor_trans = transforms.ToTensor()
tensor_img = tensor_trans(img)writer.add_image("Tensor_img", tensor_img)print(tensor_img[0][0][0])    # 归一化处理之前的数据
trans_norm = transforms.Normalize([1, 3, 5], [3, 2, 1])
img_norm = trans_norm(tensor_img)
# print(img_norm[0][0][0])     # 归一化处理后的结果
writer.add_image("Normalize", img_norm)# Resize的使用:重置图片大小
print(img.size)    # (500, 464)
trans_resize = transforms.Resize((512, 512))img_resize = trans_resize(img)
print(img_resize)   # <PIL.Image.Image image mode=RGB size=512x512 at 0x2A17E774248># Compose的使用
img_resize = tensor_trans(img_resize)
writer.add_image("Resize", img_resize, 0)
# print(img_resize)
trans_resize_2 = transforms.Resize(1024)
trans_compose = transforms.Compose([trans_resize_2, tensor_trans])
img_resize_2 = trans_compose(img)
writer.add_image("Resize", img_resize_2, 1)writer.close()

5.RandomCrop类的使用

随机裁剪。

from torchvision import transforms
from PIL import Image
from torch.utils.tensorboard import SummaryWriter# Tensor的使用
writer = SummaryWriter("log")
img_path = "../dataset/bees/10870992_eebeeb3a12.jpg"
img = Image.open(img_path)
print(img)tensor_trans = transforms.ToTensor()
tensor_img = tensor_trans(img)writer.add_image("Tensor_img", tensor_img)print(tensor_img[0][0][0])    # 归一化处理之前的数据
trans_norm = transforms.Normalize([1, 3, 5], [3, 2, 1])
img_norm = trans_norm(tensor_img)
# print(img_norm[0][0][0])     # 归一化处理后的结果
writer.add_image("Normalize", img_norm)# Resize的使用:重置图片大小
print(img.size)    # (500, 464)
trans_resize = transforms.Resize((512, 512))img_resize = trans_resize(img)
print(img_resize)   # <PIL.Image.Image image mode=RGB size=512x512 at 0x2A17E774248>#  Compose的使用:
img_resize = tensor_trans(img_resize)
writer.add_image("Resize", img_resize, 0)
# print(img_resize)
trans_resize_2 = transforms.Resize(1024)
trans_compose = transforms.Compose([trans_resize_2, tensor_trans])
img_resize_2 = trans_compose(img)
writer.add_image("Resize", img_resize_2, 1)# RendomCrop类的使用:随机裁剪
# trans_random = transforms.RandomCrop(512)
trans_random = transforms.RandomCrop(1000, 500)
trans_compose_2 = transforms.Compose([trans_random, tensor_trans])
for i in range(10):img_crop = trans_compose_2(img)# writer.add_image("RancomCrop", img_crop, i)writer.add_image("RancomCropHW", img_crop, i)writer.close()

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/97079.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

高忆管理:来了,民营经济发展局!A50暴拉,外资狂买,恒指大涨

9月4日&#xff0c;国家发改委副主任丛亮在国新办举行的推进民营经济高质量开展新闻发布会上宣布&#xff0c;近来&#xff0c;中心编办已正式批复在国家发改委内部树立民营经济开展局&#xff0c;作为促进民营经济开展壮大的专门机构&#xff0c;加强相关范畴方针统筹和谐&…

OpenCV实战(31)——基于级联Haar特征的目标检测

OpenCV实战&#xff08;31&#xff09;——基于级联Haar特征的目标检测 0. 前言1. Haar 特征图像表示2. 基于级联 Haar 特征的二分类分类器3. 级联分类器算法流程4. 使用 Haar 级联检测器进行人脸检测5. 完整代码小结系列链接 0. 前言 在机器学习基础一节中&#xff0c;我们介…

如何熟练使用vector?

&#x1f388;个人主页:&#x1f388; :✨✨✨初阶牛✨✨✨ &#x1f43b;推荐专栏1: &#x1f354;&#x1f35f;&#x1f32f;C语言初阶 &#x1f43b;推荐专栏2: &#x1f354;&#x1f35f;&#x1f32f;C语言进阶 &#x1f511;个人信条: &#x1f335;知行合一 &#x1f…

2023年超爆火的15款AI设计软件

随着人工智能技术的快速发展&#xff0c;数字插画之外的“泛设计”行业的从业者也开始在AI中逐渐受益。可能很多设计师还停留在“AI设计软件只能做一些动漫风格插画”的认知中&#xff0c;实际上受到行业需求提升的刺激&#xff0c;软件厂商已经开始积极研究并发布更多针对特定…

0基础学习VR全景平台篇 第93篇:智慧景区教程

一、上传素材 1.上传全景素材 第一步&#xff1a;进入【素材管理】 第二步&#xff1a;选择【全景图智慧景区】分类 第三步&#xff1a;选择相对景区作品分组&#xff0c;上传全景素材 2.素材标注 第一步&#xff1a;选择上传成功后素材&#xff0c;点击【未标注】 第二步&…

HTTPS

文章目录 HTTPS加密对称加密非对称加密中间人攻击引入证书HTTPS传输过程 HTTPS HTTPS是要比HTTP更安全 HTTP是一个明文传输的协议&#xff0c;本来传的试是啥&#xff0c;实际传的就是啥。 一旦传输过程中&#xff0c;数据被第三方获取到了&#xff0c;可能就会造成一些重要…

Python While 循环语句

Python 编程中 while 语句用于循环执行程序&#xff0c;即在某条件下&#xff0c;循环执行某段程序&#xff0c;以处理需要重复处理的相同任务。其基本形式为&#xff1a; while 判断条件(condition)&#xff1a;执行语句(statements)…… 执行语句可以是单个语句或语句块。判…

医院小程序如何在线搭建?实战解析

在当今数字化时代&#xff0c;移动应用程序成为我们生活中必不可少的一部分。特别是在医疗领域&#xff0c;移动应用程序的需求更为迫切。为了满足这一需求&#xff0c;开发一个医疗小程序成为了许多医疗机构的优先选择。 在本文中&#xff0c;我们将分享一个实战攻略&#xff…

c++11 标准模板(STL)(std::basic_stringstream)(四)

定义于头文件 <sstream> template< class CharT, class Traits std::char_traits<CharT> > class basic_stringstream;(C11 前)template< class CharT, class Traits std::char_traits<CharT>, class Allocator std::alloc…

ZooKeeper的典型应用场景及实现

文章目录 1、典型应用场景及实现1.1、 数据发布/订阅1.1.1、配置管理案列 1.2、负载均衡1.3、命名服务1.4、分布式协调/通知1.4.1、一种通用的分布式系统机器间通信方式 1.5、集群管理1.6、Master选举1.7、分布式锁1.7.1、排他锁1.7.2、共享锁 1.8、分布式队列 2、ZooKeeper在大…

zookeeper 集群

zookeeper 集群 1、zookeeper 集群说明 initLimit 是Zookeeper用它来限定集群中的Zookeeper服务器连接到Leader的时限 syncLimit 限制了follower服务器与leader服务器之间请求和应答之间的时限 服务器名称与地址&#xff1a;集群信息&#xff08;服务器编号&#xff0c;服务器…

【正点原子STM32连载】第二十三章 高级定时器互补输出带死区控制实验 摘自【正点原子】APM32F407最小系统板使用指南

第二十三章 高级定时器互补输出带死区控制实验 本章将介绍使用APM32F407输出带死区和刹车控制的两路互补PWM。通过本章的学习&#xff0c;读者将学习到高级定时器的互补输出、死区插入和刹车的功能的使用。 本章分为如下几个小节&#xff1a; 23.1 硬件设计 23.2 程序设计 23.…