时序预测 | MATLAB实现TCN-BiGRU时间卷积双向门控循环单元时间序列预测

时序预测 | MATLAB实现TCN-BiGRU时间卷积双向门控循环单元时间序列预测

目录

    • 时序预测 | MATLAB实现TCN-BiGRU时间卷积双向门控循环单元时间序列预测
      • 预测效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.MATLAB实现TCN-BiGRU时间卷积双向门控循环单元时间序列预测;
2.运行环境为Matlab2021b;
3.单变量时间序列预测;
4.data为数据集,excel数据,单变量时间序列,MainTCN_BiGRUTS.m为主程序,运行即可,所有文件放在一个文件夹;
5.命令窗口输出R2、MSE、RMSE、MAE、MAPE多指标评价;
TCN 模型通过一维因果卷积对过去的数据进行提取,保证时序性,残差连接加快收敛速度,扩张卷积实现时序特征提取。BiGRU模型作为循环神经网络的变种,具有非线性拟合能力,能够有效提取数据特征,且在保障得到与LSTM 相近预测效果的同时获得更快的收敛速度。文中将两者结合搭建了TCN-BiGRU模型。

模型描述

由于TCN 具有扩张因果卷积结构,拥有突出的特征提取能力,因此可对原始特征进行融合获得高维的抽象特征,加强了对特征信息的挖掘。而
BiGRU 网络具有强大的时序预测能力,将TCN 和BiGRU网络结合,通过TCN 特征提取后输入至BiGRU 网络,提高了BiGRU网络记忆单元的处理效
率,使得预测模型更有效地学习时间序列的复杂交互关系。因此,本文搭建了TCN-BiGRU预测模型。

TCN-BiGRU是一种将时间卷积神经网络(TCN)和双向门控循环单元(BiGRU)结合在一起的神经网络模型。TCN是一种能够处理序列数据的卷积神经网络,它能够捕捉到序列中的长期依赖关系。BiGRU则是一种具有记忆单元的递归神经网络,它能够处理序列数据中的短期和长期依赖。
TCN-BiGRU模型的输入可以是多个序列,每个序列可以是不同的特征或变量。例如,如果我们想预测某个城市未来一周的平均温度,我们可以将过去一段时间内的温度、湿度、气压等多个变量作为输入序列。模型的输出是一个值,即未来某个时间点的平均温度。
在TCN-BiGRU中,时间卷积层用于捕捉序列中的长期依赖关系,BiGRU层用于处理序列中的短期和长期依赖。多个输入序列被合并成一个张量,然后送入TCN-BiGRU网络进行训练。在训练过程中,模型优化目标是最小化预测输出与真实值之间的差距。
TCN-BiGRU模型在时间序列预测问题上表现良好,特别是对于长期依赖的序列数据。它可以被用于许多应用场景,例如股票价格预测、交通流量预测等。

程序设计

  • 完整源码和数据获取方式:私信博主回复MATLAB实现TCN-BiGRU时间卷积双向门控循环单元时间序列预测
%% 预测
t_sim1 = predict(net, p_train); 
t_sim2 = predict(net, p_test ); %%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);%%  均方根误差
error1 = sqrt(sum((T_sim1' - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2' - T_test ).^2) ./ N);%%  相关指标计算%  MAE
mae1 = sum(abs(T_sim1' - T_train)) ./ M ;
mae2 = sum(abs(T_sim2' - T_test )) ./ N ;disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])%% 平均绝对百分比误差MAPE
MAPE1 = mean(abs((T_train - T_sim1')./T_train));
MAPE2 = mean(abs((T_test - T_sim2')./T_test));disp(['训练集数据的MAPE为:', num2str(MAPE1)])
disp(['测试集数据的MAPE为:', num2str(MAPE2)])%  MBE
mbe1 = sum(abs(T_sim1' - T_train)) ./ M ;
mbe2 = sum(abs(T_sim1' - T_train)) ./ N ;disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])%均方误差 MSE
mse1 = sum((T_sim1' - T_train).^2)./M;
mse2 = sum((T_sim2' - T_test).^2)./N;disp(['训练集数据的MSE为:', num2str(mse1)])
disp(['测试集数据的MSE为:', num2str(mse2)])

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/97425.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2023年产业地产研究报告

第一章 行业概况 1.1 定义 产业地产是一种特殊类型的房地产,它以土地为基本要素,以企业为投资、开发、运营的主要主体。这种类型的房地产以区域“产、城、人”的有效聚合和持续发展为核心,产业运营和空间运营为主要盈利途径。产业地产的主要…

ELK框架Logstash配合Filebeats和kafka使用

ELK框架Logstash配合Filebeats和kafka使用 本文目录 ELK框架Logstash配合Filebeats和kafka使用配置文件结构input为标准输入,output为标准输出input为log文件output为标准输出output为es input为tcpspringboot配置logstash配置 input为filebeatsfilebeats配置logsta…

[羊城杯 2023] web

文章目录 D0nt pl4y g4m3!!! D0n’t pl4y g4m3!!! 打开题目&#xff0c;可以判断这里为php Development Server 启动的服务 查询得知&#xff0c;存在 PHP<7.4.21 Development Server源码泄露漏洞(参考文章) 抓包&#xff0c;构造payload 得到源码 class Pro{private $ex…

Selenium 三种等待方式详解 (强制等待、隐式等待、显示等待)

前言 ①在进行WEB自动化工作时&#xff0c;一般要等待某一页面元素加载完成后&#xff0c;才能对该元素执行操作&#xff0c;否则自动化脚本会抛出找不到元素的错误&#xff0c;这样就要求我们在UI自动化测试的有些场景上加上等待时间。 ②等待方式的设置是保证自动化脚本稳定…

【模方ModelFun】实景三维建模和修模4.0.7最新版安装包以及图文安装教程

模方ModelFun 具有多种功能&#xff0c;旨在帮助用户进行实景三维建模和修模。以下是一些主要功能的简要介绍&#xff1a; 实景三维建模&#xff1a;【模方ModelFun】提供了自动化的实景三维重建功能&#xff0c;可以从实景图像中提取几何形状和纹理信息&#xff0c;生成高质量…

【Python从入门到进阶】34、selenium基本概念及安装流程

接上篇《33、使用bs4获取星巴克产品信息》 上一篇我们介绍了如何使用bs4来解析星巴克网站&#xff0c;获取其产品信息。本篇我们来了解selenium技术的基础。 一、什么是selenium&#xff1f; Selenium是一种用于自动化Web浏览器操作的开源工具。它提供了一组API&#xff08;应…

QT(9.3)定时器,绘制事件

作业&#xff1a; 自定义一个闹钟 pro文件&#xff1a; QT core gui texttospeechgreaterThan(QT_MAJOR_VERSION, 4): QT widgetsCONFIG c11# The following define makes your compiler emit warnings if you use # any Qt feature that has been marked deprecat…

《智能网联汽车自动驾驶功能测试规程》

一、 编制背景 2018 年4 月12 日&#xff0c;工业和信息化部、公安部、交通运输部联合发布《智能网联汽车道路测试管理规范(试行)》&#xff08;以下简称《管理规范》&#xff09;&#xff0c;对智能网联汽车道路测试申请、审核、管理以及测试主体、测试驾驶人和测试车辆要求等…

通过HFS低成本搭建NAS,并内网穿透实现公网访问

文章目录 前言1.下载安装cpolar1.1 设置HFS访客1.2 虚拟文件系统 2. 使用cpolar建立一条内网穿透数据隧道2.1 保留隧道2.2 隧道名称2.3 成功使用cpolar创建二级子域名访问本地hfs 总结 前言 云存储作为一个新概念&#xff0c;在前些年炒的火热&#xff0c;虽然伴随一系列黑天鹅…

Windows环境下RabbitMQ下载安装

一、准备安装文件 1、下载Erlang 登录网站Downloads - Erlang/OTP&#xff0c;选择“Download Windows installer”&#xff0c;如下图所示&#xff1a; 弹出框中&#xff0c;选在下载保存地址&#xff0c;保存文件&#xff0c;如下图所示&#xff1a; 2、下载RabbitMQ 登录…

专访远航汽车远勤山:踏踏实实做好产品 直面挑战乘风远航

8月25日&#xff0c;第二十六届成都国际汽车展览会在中国西部国际博览城隆重开幕。车展举办期间&#xff0c;远航汽车董事长远勤山先生、产品研发总监王震先生向媒体分享了远航汽车品牌发展、产品研发、技术创新以及市场布局等内容。 “通过我们的付出和努力&#xff0c;让我们…

修复中间件log4j漏洞方案(直接更换漏洞jar包)

说明&#xff1a; 后台服务里面的log4j漏洞我们已经全部升级处理了&#xff0c;但是一些中间件镜像包里的log4j漏洞需要单独处理 解决办法以ElasticSearch7.6.2为例&#xff1a; 方法&#xff1a; &#xff08;1&#xff09;找到容器里面有哪些旧的log4j依赖包 &#xff08;…