机器学习(吴恩达第一课)

课程链接

文章目录

  • 第一周
    • 1、机器学习定义
    • 2、监督学习(Supervised learning)
      • 1、回归(Regression)
      • 2、分类(Classification)
    • 3、无监督学习(Unsupervised learning)
    • 4、线性回归模型
    • 5、代价函数
    • 6、梯度下降(Gradient descent)
      • 1、学习率
      • 2、用于线性回归的梯度下降
  • 第二周(多维特征)
    • 1、特征缩放
    • 2、如何设置学习率
    • 3、特征工程(Feature engineering)
    • 4、多项式回归(Polynomial regression)
  • 第三周
    • 1、逻辑回归(二元分类)
    • 2、决策边界(decision boundary)
    • 3、逻辑回归中的代价函数
    • 4、简化逻辑回归代价函数
    • 5、实现梯度下降
    • 6、过拟合问题(The Problem of Overfitting)
    • 7、解决过拟合
    • 8、正则化
    • 9、用于线性回归的正则方法
    • 10、用于逻辑回归的正则方法

第一周

1、机器学习定义

在这里插入图片描述

2、监督学习(Supervised learning)

从给出“正确答案”的数据集中学习

1、回归(Regression)

在这里插入图片描述

2、分类(Classification)

在这里插入图片描述
总结

3、无监督学习(Unsupervised learning)

在这里插入图片描述

4、线性回归模型

1.术语。
在这里插入图片描述
2.单变量线性回归
在这里插入图片描述

5、代价函数

平方误差代价函数
在这里插入图片描述

6、梯度下降(Gradient descent)

梯度下降算法选择不同的起点,可能会得到不同的结果,因为它得到的是一个局部最小值。

在这里插入图片描述
在这里插入图片描述

1、学习率

在这里插入图片描述

2、用于线性回归的梯度下降

线性回归的平方误差成本函数时,成本函数没有也永远不会有多个局部最小值,它只有一个全局最小值。因为这个成本函数是一个凸函数。
在这里插入图片描述
梯度下降过程
在这里插入图片描述

第二周(多维特征)

正规方程法(只适用于线性回归)
在这里插入图片描述

1、特征缩放

多个变量的度量不同,数字之间相差的大小也不同,如果可以将所有的特征变量缩放到大致相同范围,这样会减少梯度算法的迭代。
特征缩放不一定非要落到[-1,1]之间,只要数据足够接近就可以。
讨论了三种特征缩放方法:
1、每个特征除以用户选择的值,得到-1到1之间的范围。
2、Mean normalization: x i = x i − μ i m a x − m i n x_i = \frac{x_i-\mu_i}{max-min} xi=maxminxiμi
3、Z-score normalization: X i = X i − μ i σ i X_i = \frac{X_i-\mu_i}{\sigma_i} Xi=σiXiμi μ i \mu_i μi表示平均值, σ i \sigma_i σi表示标准差。

特征值范围太大可能会导致梯度下降运行缓慢,所以需要进行特征缩放。

在这里插入图片描述

2、如何设置学习率

在这里插入图片描述

从小到大依次尝试,找到一个满足梯度下降的最大学习率。
在这里插入图片描述

3、特征工程(Feature engineering)

在这里插入图片描述

4、多项式回归(Polynomial regression)

上述讨论的都是线性回归(只有一次幂)
在这里插入图片描述
在这里插入图片描述

第三周

了解分类问题。
逻辑回归用于 解决y为零或一的二元分类问题。

1、逻辑回归(二元分类)


在这里插入图片描述

2、决策边界(decision boundary)

在这里插入图片描述
在这里插入图片描述
逻辑回归可以拟合相当复杂的数据
在这里插入图片描述

3、逻辑回归中的代价函数

事实证明,通过这种损失函数的选择,整体成本函数将是凸的,因此你可以可靠的使用梯度下降将您带到全局最小值,证明这个函数是凸的,就超过了这个代价的范围。
在这里插入图片描述

4、简化逻辑回归代价函数

在这里插入图片描述

5、实现梯度下降

逻辑回归的梯度下降
在这里插入图片描述
在这里插入图片描述

6、过拟合问题(The Problem of Overfitting)

在这里插入图片描述
在这里插入图片描述

7、解决过拟合

1、对抗过度拟合的第一个工具是获取更多的训练数据。
在这里插入图片描述
2、如果你有很多的特征,但没有足够的训练数据,那么你的学习算法也可能会过度拟合您的训练集。如果我们只选择最有用的一个特征子集,您可能发现您的模型不再过度拟合。
在这里插入图片描述
3、解决过度拟合的第三个选项----正则化
正则化的作用是让你保留所有的特征,它们只是防止特征产生过大的影响(这有时会导致过度拟合),顺便说一句,按照惯例,我们通常只是减小wj参数的大小,即w1~wn。是否正则化参数b并没有太大的区别,通常不这么做 。在实践中是否也正则化b应该没有什么区别。
在这里插入图片描述
在这里插入图片描述

8、正则化

我们希望最小化原始成本,即均方误差成本加上额外的正则化项。所以这个新的成本函数权衡了你可能拥有的两个目标。尝试最小化第一项,并尽量减小第二项。该算法试图使参数wj保持较小,这将有助于减少过拟合。你选择的lambda值指定了相对重要性或相对权衡或你如何在这两个目标之间取得平衡。
在这里插入图片描述
1、如果lambda为0,您最终会拟合这条过度摆动,过于复杂的曲线,并且过度拟合
2、如果你说lambda是一个非常非常大的数字,比如lambda=10^10,那么你对右边的这个正则化项非常重视。最小化这种情况的唯一方法是确保w的所有值都非常接近于0。因此f(x)基本等于b,因此学习算法拟合水平直线和欠拟合。
 
 
 
接下来的两节,将充实如何将正则化应用于线性回归和逻辑回归,以及如何通过梯度下降训练这些模型。您将能够避免这两种算法的过度拟合。

9、用于线性回归的正则方法


在这里插入图片描述

10、用于逻辑回归的正则方法

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/98618.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Windows中多线程的基础知识——1互斥对象

目录 1 多线程的基本概念1.1 进程一、程序和进程的概念二、进程组成三、进程地址空间 1.2 线程一、线程组成二、线程运行三、线程创建函数 1.3 多进程与多线程并发一、多进程并发二、多线程并发 2 线程同步2.1 一个经典的线程同步问题2.2 利用互斥对象实现线程同步一、创建互斥…

【zip密码】zip压缩包删除密码方法

Zip压缩包设置设置了密码,想要删除密码,除了将压缩包解压出来之后再将文件压缩为不带密码的压缩文件以外,还有一种删除密码的方法。设置方法如下: 右键点击zip文件,找到打开方式,以Windows资源管理器方式打…

嵌入式学习笔记(12)汇编写启动代码之设置栈和调用C语言

C语言运行时需求和栈的意义 “C语言运行时(runtime)”需要一定的条件,这些条件由汇编来提供。C语言运行时主要是需要栈。 C语言和栈的关系:C语言中的局部变量都是用栈来实现的。如果我们汇编部分没有给C部分预先设置合理合法的栈…

Scala集合继承体系图

Scala集合简介 1) Scala 的集合有三大类:序列 Seq、集Set、映射 Map,所有的集合都扩展自 Iterable特质。 2) 对于几乎所有的集合类,Scala 都同时提供了可变和不可变的版本,分别位于以下两个包 不可变集合…

【vue2第十二章】ref和$refs获取dom元素 和 vue异步更新与$nextTick使用

ref和$refs获取dom元素 为什么会有 ref 和 $refs? 因为在vue页面中使用dom查找元素,不管你是不是在子组件里面查找,查找的都是整个页面的元素,如果你想查找单独组件里面的元素是不容易实现的,除非把每个组件的class写…

爱校对:让法律、医疗、教育行业的文本更加无懈可击

在今天这个信息爆炸的世界里,文本准确性成了法律、医疗和教育这些严谨行业中一个不能忽视的要点。一个小错误可能造成严重的后果,甚至影响人们的生命和事业。这正是为什么更多的专业人士开始选择使用“爱校对”来确保他们的文档、研究和通讯无懈可击。 法…

【数据结构练习】栈的面试题集锦

目录 前言: 1.进栈过程中可以出栈的选择题 2.将递归转化为循环 3.逆波兰表达式求值 4.有效的括号 5. 栈的压入、弹出序列 6. 最小栈 前言: 数据结构想要学的好,刷题少不了,我们不仅要多刷题,还要刷好题&#x…

PMP备考过程和心得

23年还剩11月的考试,教材是第七版教材,也有可能增加连线题和填空题,要做好题型变化的准备。现在可以将英文报名先报了。 第七版教材 第七版再度升级,不否认前几版的基于过程的方法,强调项目不只是产生输出&#xff0…

设计模式-9--迭代器模式(Iterator Pattern)

一、什么是迭代器模式 迭代器模式(Iterator Pattern)是一种行为型设计模式,用于提供一种统一的方式来访问一个聚合对象中的各个元素,而不需要暴露该聚合对象的内部结构。迭代器模式将遍历集合的责任从集合对象中分离出来&#xf…

开源PHP 代挂机源码,可对接QQ、网易云、哔哩哔哩、QQ空间、等级加速等等

本程序运行环境PHP5.6 95dg/config.php修改系统数据库 进入数据库绑定 你搭建的域名即可 部署完成 进入数据库 找到data 输入绑定授权域名即可进行授权打开此网站 网站是无对接接口 需要您自行找对接接口即可 本源码有点乱 有实力的铁铁 可以修改一下哦!

ping: www.baidu.com: Name or service not known 写了DNS还是不行

环境描述:ESXI平台上,一台Centos7虚拟主机。 问题描述:平台上的其他的虚拟机可以正常ping通,就这台ping IP地址可以通,ping域名解析失败。 排查过程: 1、检查网卡配置文件和/etc/resolv.conf配置文件是否…

一文了解评估 K8s 原生存储产品需要关注的关键能力

近些年,越来越多的企业使用 Kubernetes(K8s)支持生产环境关键业务。这些业务往往对存储性能和稳定性具有更高的要求,传统存储方案难以充分满足,因此不少用户开始关注更契合 K8s 环境的 K8s 原生存储方案。 不过&#…